Primitive Type slice [−]
Utilities for slice manipulation
The slice
`slice` module contains useful code to help work with slice values.
Slices are a view into a block of memory represented as a pointer and a length.
// slicing a Vec let vec = vec![1, 2, 3]; let int_slice = &vec[..]; // coercing an array to a slice let str_slice: &[&str] = &["one", "two", "three"];
Slices are either mutable or shared. The shared slice type is &[T]
`&[T], while the mutable slice type is
`,
while the mutable slice type is &mut [T]
`&mut [T], where
`, where T
`T` represents the element
type. For example, you can mutate the block of memory that a mutable slice
points to:
let x = &mut [1, 2, 3]; x[1] = 7; assert_eq!(x, &[1, 7, 3]);
Here are some of the things this module contains:
Structs
There are several structs that are useful for slices, such as Iter
`Iter`, which
represents iteration over a slice.
Trait Implementations
There are several implementations of common traits for slices. Some examples include:
Clone
`Clone`Eq
`Eq,
`,Ord
`Ord- for slices whose element type are
` - for slices whose element type areEq
`Eqor
` orOrd
`Ord`.Hash
`Hash- for slices whose element type is
` - for slices whose element type isHash
`Hash`
Iteration
The slices implement IntoIterator
`IntoIterator`. The iterator yields references to the
slice elements.
let numbers = &[0, 1, 2]; for n in numbers { println!("{} is a number!", n); }
The mutable slice yields mutable references to the elements:
fn main() { let mut scores = [7, 8, 9]; for score in &mut scores[..] { *score += 1; } }let mut scores = [7, 8, 9]; for score in &mut scores[..] { *score += 1; }
This iterator yields mutable references to the slice's elements, so while the element
type of the slice is i32
`i32, the element type of the iterator is
`, the element type of the iterator is &mut i32
`&mut i32`.
.iter()
`.iter()and
` and.iter_mut()
`.iter_mut()` are the explicit methods to return the default iterators.- Further methods that return iterators are
.split()
`.split(),
`,.splitn()
`.splitn(),
`,.chunks()
`.chunks(),
`,.windows()
`.windows()` and more.
Methods
impl<T> [T]
Allocating extension methods for slices.
fn sort_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering
Sorts the slice, in place, using compare
`compare` to compare
elements.
This sort is O(n log n)
`O(n log n)worst-case and stable, but allocates approximately
` worst-case and stable, but allocates
approximately 2 * n
`2 * n, where
`, where n
`nis the length of
` is the length of self
`self`.
Examples
fn main() { let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]); }let mut v = [5, 4, 1, 3, 2]; v.sort_by(|a, b| a.cmp(b)); assert!(v == [1, 2, 3, 4, 5]); // reverse sorting v.sort_by(|a, b| b.cmp(a)); assert!(v == [5, 4, 3, 2, 1]);
fn move_from(&mut self, src: Vec<T>, start: usize, end: usize) -> usize
: uncertain about this API approach
Consumes src
`srcand moves as many elements as it can into
` and moves as many elements as it can into self
`self`
from the range [start,end).
Returns the number of elements copied (the shorter of self.len()
`self.len()and
`
and end - start
`end - start`).
Arguments
- src - A mutable vector of
T
`T` - start - The index into
src
`src` to start copying from - end - The index into
src
`src` to stop copying from
Examples
#![feature(collections)] extern crate collections; fn main() { let mut a = [1, 2, 3, 4, 5]; let b = vec![6, 7, 8]; let num_moved = a.move_from(b, 0, 3); assert_eq!(num_moved, 3); assert!(a == [6, 7, 8, 4, 5]); }let mut a = [1, 2, 3, 4, 5]; let b = vec![6, 7, 8]; let num_moved = a.move_from(b, 0, 3); assert_eq!(num_moved, 3); assert!(a == [6, 7, 8, 4, 5]);
fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
`[0, mid)(excluding the index
` (excluding
the index mid
`miditself) and the second will contain all indices from
` itself) and the second will contain all
indices from [mid, len)
`[mid, len)(excluding the index
` (excluding the index len
`len` itself).
Panics if mid > len
`mid > len`.
Examples
fn main() { let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2); }let v = [10, 40, 30, 20, 50]; let (v1, v2) = v.split_at(2); assert_eq!([10, 40], v1); assert_eq!([30, 20, 50], v2);
fn iter(&self) -> Iter<T>
Returns an iterator over the slice.
fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
`pred`. The matched element is not contained in the subslices.
Examples
Print the slice split by numbers divisible by 3 (i.e. [10, 40]
`[10, 40],
`,
[20]
`[20],
`, [50]
`[50]`):
let v = [10, 40, 30, 20, 60, 50]; for group in v.split(|num| *num % 3 == 0) { println!("{:?}", group); }
fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
`pred, limited to returning at most
`, limited to returning at most n
`n` items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e. [10, 40]
`[10, 40],
`,
[20, 60, 50]
`[20, 60, 50]`):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
`predlimited to returning at most
` limited to returning at most n
`n` items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e. [50]
`[50],
`, [10, 40, 30, 20]
`[10, 40, 30, 20]`):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
fn windows(&self, size: usize) -> Windows<T>
Returns an iterator over all contiguous windows of length
size
`size. The windows overlap. If the slice is shorter than
`. The windows overlap. If the slice is shorter than
size
`size`, the iterator returns no values.
Panics
Panics if size
`size` is 0.
Example
Print the adjacent pairs of a slice (i.e. [1,2]
`[1,2],
`, [2,3]
`[2,3],
`,
[3,4]
`[3,4]`):
let v = &[1, 2, 3, 4]; for win in v.windows(2) { println!("{:?}", win); }
fn chunks(&self, size: usize) -> Chunks<T>
Returns an iterator over size
`sizeelements of the slice at a time. The chunks do not overlap. If
` elements of the slice at a
time. The chunks do not overlap. If size
`sizedoes not divide the length of the slice, then the last chunk will not have length
` does not divide the
length of the slice, then the last chunk will not have length
size
`size`.
Panics
Panics if size
`size` is 0.
Example
Print the slice two elements at a time (i.e. [1,2]
`[1,2],
`,
[3,4]
`[3,4],
`, [5]
`[5]`):
let v = &[1, 2, 3, 4, 5]; for win in v.chunks(2) { println!("{:?}", win); }
fn get(&self, index: usize) -> Option<&T>
Returns the element of a slice at the given index, or None
`None` if the
index is out of bounds.
Examples
fn main() { let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3)); }let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(None, v.get(3));
fn first(&self) -> Option<&T>
Returns the first element of a slice, or None
`None` if it is empty.
Examples
fn main() { let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first()); }let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
fn tail(&self) -> &[T]
: likely to be renamed
Returns all but the first element of a slice.
fn init(&self) -> &[T]
: likely to be renamed
Returns all but the last element of a slice.
fn last(&self) -> Option<&T>
Returns the last element of a slice, or None
`None` if it is empty.
Examples
fn main() { let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last()); }let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
unsafe fn get_unchecked(&self, index: usize) -> &T
Returns a pointer to the element at the given index, without doing bounds checking.
fn as_ptr(&self) -> *const T
Returns an unsafe pointer to the slice's buffer
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
fn binary_search_by<F>(&self, f: F) -> Result<usize, usize> where F: FnMut(&T) -> Ordering
Binary search a sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
`Less,
`,
Equal
`Equalor
` or Greater
`Greater` the desired target.
If a matching value is found then returns Ok
`Ok, containing the index for the matched element; if no match is found then
`, containing
the index for the matched element; if no match is found then
Err
`Err` is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
`[1,4]`.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1...4) => true, _ => false, });
fn len(&self) -> usize
Returns the number of elements in the slice.
Example
fn main() { let a = [1, 2, 3]; assert_eq!(a.len(), 3); }let a = [1, 2, 3]; assert_eq!(a.len(), 3);
fn is_empty(&self) -> bool
Returns true if the slice has a length of 0
Example
fn main() { let a = [1, 2, 3]; assert!(!a.is_empty()); }let a = [1, 2, 3]; assert!(!a.is_empty());
fn get_mut(&mut self, index: usize) -> Option<&mut T>
Returns a mutable reference to the element at the given index,
or None
`None` if the index is out of bounds
fn iter_mut(&mut self) -> IterMut<T>
Returns an iterator that allows modifying each value
fn first_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the first element of a slice, or None
`None` if it is empty
fn tail_mut(&mut self) -> &mut [T]
: likely to be renamed or removed
Returns all but the first element of a mutable slice
fn init_mut(&mut self) -> &mut [T]
: likely to be renamed or removed
Returns all but the last element of a mutable slice
fn last_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the last item in the slice.
fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over mutable subslices separated by elements that
match pred
`pred`. The matched element is not contained in the subslices.
fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
`pred, limited to returning at most
`, limited to returning at most n
`n` items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool
Returns an iterator over subslices separated by elements that match
pred
`predlimited to returning at most
` limited to returning at most n
`n` items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>
Returns an iterator over chunk_size
`chunk_sizeelements of the slice at a time. The chunks are mutable and do not overlap. If
` elements of the slice at a time.
The chunks are mutable and do not overlap. If chunk_size
`chunk_sizedoes not divide the length of the slice, then the last chunk will not have length
` does
not divide the length of the slice, then the last chunk will not
have length chunk_size
`chunk_size`.
Panics
Panics if chunk_size
`chunk_size` is 0.
fn swap(&mut self, a: usize, b: usize)
Swaps two elements in a slice.
Arguments
- a - The index of the first element
- b - The index of the second element
Panics
Panics if a
`aor
` or b
`b` are out of bounds.
Example
fn main() { let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]); }let mut v = ["a", "b", "c", "d"]; v.swap(1, 3); assert!(v == ["a", "d", "c", "b"]);
fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
Divides one &mut
`&mut` into two at an index.
The first will contain all indices from [0, mid)
`[0, mid)(excluding the index
` (excluding
the index mid
`miditself) and the second will contain all indices from
` itself) and the second will contain all
indices from [mid, len)
`[mid, len)(excluding the index
` (excluding the index len
`len` itself).
Panics
Panics if mid > len
`mid > len`.
Example
fn main() { let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); } }let mut v = [1, 2, 3, 4, 5, 6]; // scoped to restrict the lifetime of the borrows { let (left, right) = v.split_at_mut(0); assert!(left == []); assert!(right == [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(2); assert!(left == [1, 2]); assert!(right == [3, 4, 5, 6]); } { let (left, right) = v.split_at_mut(6); assert!(left == [1, 2, 3, 4, 5, 6]); assert!(right == []); }
fn reverse(&mut self)
Reverse the order of elements in a slice, in place.
Example
fn main() { let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]); }let mut v = [1, 2, 3]; v.reverse(); assert!(v == [3, 2, 1]);
unsafe fn get_unchecked_mut(&mut self, index: usize) -> &mut T
Returns an unsafe mutable pointer to the element in index
fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the slice's buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
fn to_vec(&self) -> Vec<T> where T: Clone
Copies self
`selfinto a new
` into a new Vec
`Vec`.
fn permutations(&self) -> Permutations<T> where T: Clone
Creates an iterator that yields every possible permutation of the vector in succession.
Examples
#![feature(collections)] extern crate collections; fn main() { let v = [1, 2, 3]; let mut perms = v.permutations(); for p in perms { println!("{:?}", p); } }let v = [1, 2, 3]; let mut perms = v.permutations(); for p in perms { println!("{:?}", p); }
Iterating through permutations one by one.
#![feature(collections)] extern crate collections; fn main() { let v = [1, 2, 3]; let mut perms = v.permutations(); assert_eq!(Some(vec![1, 2, 3]), perms.next()); assert_eq!(Some(vec![1, 3, 2]), perms.next()); assert_eq!(Some(vec![3, 1, 2]), perms.next()); }let v = [1, 2, 3]; let mut perms = v.permutations(); assert_eq!(Some(vec![1, 2, 3]), perms.next()); assert_eq!(Some(vec![1, 3, 2]), perms.next()); assert_eq!(Some(vec![3, 1, 2]), perms.next());
fn clone_from_slice(&mut self, src: &[T]) -> usize where T: Clone
Copies as many elements from src
`srcas it can into
` as it can into self
`self(the shorter of
` (the
shorter of self.len()
`self.len()and
` and src.len()
`src.len()`). Returns the number
of elements copied.
Example
#![feature(collections)] extern crate collections; fn main() { let mut dst = [0, 0, 0]; let src = [1, 2]; assert!(dst.clone_from_slice(&src) == 2); assert!(dst == [1, 2, 0]); let src2 = [3, 4, 5, 6]; assert!(dst.clone_from_slice(&src2) == 3); assert!(dst == [3, 4, 5]); }let mut dst = [0, 0, 0]; let src = [1, 2]; assert!(dst.clone_from_slice(&src) == 2); assert!(dst == [1, 2, 0]); let src2 = [3, 4, 5, 6]; assert!(dst.clone_from_slice(&src2) == 3); assert!(dst == [3, 4, 5]);
fn sort(&mut self) where T: Ord
Sorts the slice, in place.
This is equivalent to self.sort_by(|a, b| a.cmp(b))
`self.sort_by(|a, b| a.cmp(b))`.
Examples
fn main() { let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]); }let mut v = [-5, 4, 1, -3, 2]; v.sort(); assert!(v == [-5, -3, 1, 2, 4]);
fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord
Binary search a sorted slice for a given element.
If the value is found then Ok
`Okis returned, containing the index of the matching element; if the value is not found then
` is returned, containing the
index of the matching element; if the value is not found then
Err
`Err` is returned, containing the index where a matching
element could be inserted while maintaining sorted order.
Example
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1,4]
`[1,4]`.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1...4) => true, _ => false, });
fn next_permutation(&mut self) -> bool where T: Ord
: uncertain if this merits inclusion in std
Mutates the slice to the next lexicographic permutation.
Returns true
`trueif successful and
` if successful and false
`false` if the slice is at the
last-ordered permutation.
Example
#![feature(collections)] extern crate collections; fn main() { let v: &mut [_] = &mut [0, 1, 2]; v.next_permutation(); let b: &mut [_] = &mut [0, 2, 1]; assert!(v == b); v.next_permutation(); let b: &mut [_] = &mut [1, 0, 2]; assert!(v == b); }let v: &mut [_] = &mut [0, 1, 2]; v.next_permutation(); let b: &mut [_] = &mut [0, 2, 1]; assert!(v == b); v.next_permutation(); let b: &mut [_] = &mut [1, 0, 2]; assert!(v == b);
fn prev_permutation(&mut self) -> bool where T: Ord
: uncertain if this merits inclusion in std
Mutates the slice to the previous lexicographic permutation.
Returns true
`trueif successful and
` if successful and false
`false` if the slice is at the
first-ordered permutation.
Example
#![feature(collections)] extern crate collections; fn main() { let v: &mut [_] = &mut [1, 0, 2]; v.prev_permutation(); let b: &mut [_] = &mut [0, 2, 1]; assert!(v == b); v.prev_permutation(); let b: &mut [_] = &mut [0, 1, 2]; assert!(v == b); }let v: &mut [_] = &mut [1, 0, 2]; v.prev_permutation(); let b: &mut [_] = &mut [0, 2, 1]; assert!(v == b); v.prev_permutation(); let b: &mut [_] = &mut [0, 1, 2]; assert!(v == b);
fn position_elem(&self, t: &T) -> Option<usize> where T: PartialEq
Find the first index containing a matching value.
fn rposition_elem(&self, t: &T) -> Option<usize> where T: PartialEq
Find the last index containing a matching value.
fn contains(&self, x: &T) -> bool where T: PartialEq
Returns true if the slice contains an element with the given value.
Examples
fn main() { let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50)); }let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq
Returns true if needle
`needle` is a prefix of the slice.
Examples
fn main() { let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50])); }let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq
Returns true if needle
`needle` is a suffix of the slice.
Examples
fn main() { let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30])); }let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
fn into_vec(self: Box<Self>) -> Vec<T>
Converts self
`self` into a vector without clones or allocation.
Trait Implementations
impl<T> AsRef<[T]> for [T]
impl<T> AsMut<[T]> for [T]
impl<'a, 'b, A, B> PartialEq<[A; 0]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 0]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 1]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 1]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 2]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 2]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 3]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 3]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 4]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 4]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 5]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 5]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 6]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 6]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 7]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 7]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 8]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 8]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 9]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 9]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 10]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 10]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 11]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 11]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 12]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 12]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 13]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 13]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 14]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 14]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 15]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 15]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 16]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 16]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 17]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 17]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 18]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 18]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 19]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 19]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 20]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 20]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 21]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 21]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 22]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 22]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 23]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 23]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 24]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 24]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 25]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 25]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 26]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 26]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 27]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 27]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 28]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 28]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 29]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 29]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 30]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 30]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 31]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 31]> for &'b mut [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 32]> for [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b [B] where B: PartialEq<A>
impl<'a, 'b, A, B> PartialEq<[A; 32]> for &'b mut [B] where B: PartialEq<A>
impl<T> Repr<Slice<T>> for [T]
impl<T> Index<usize> for [T]
impl<T> IndexMut<usize> for [T]
impl<T> Index<Range<usize>> for [T]
impl<T> Index<RangeTo<usize>> for [T]
impl<T> Index<RangeFrom<usize>> for [T]
impl<T> Index<RangeFull> for [T]
impl<T> IndexMut<Range<usize>> for [T]
impl<T> IndexMut<RangeTo<usize>> for [T]
impl<T> IndexMut<RangeFrom<usize>> for [T]
impl<T> IndexMut<RangeFull> for [T]
impl<'a, T> Default for &'a [T]
impl<'a, T> IntoIterator for &'a [T]
impl<'a, T> IntoIterator for &'a mut [T]
impl MutableByteVector for [u8]
fn set_memory(&mut self, value: u8)
impl<A, B> PartialEq<[B]> for [A] where A: PartialEq<B>
impl<T> Eq for [T] where T: Eq
impl<T> Ord for [T] where T: Ord
impl<T> PartialOrd<[T]> for [T] where T: PartialOrd<T>
fn partial_cmp(&self, other: &[T]) -> Option<Ordering>
fn lt(&self, other: &[T]) -> bool
fn le(&self, other: &[T]) -> bool
fn ge(&self, other: &[T]) -> bool
fn gt(&self, other: &[T]) -> bool
impl IntSliceExt<u8, i8> for [u8]
fn as_unsigned(&self) -> &[u8]
fn as_signed(&self) -> &[i8]
fn as_unsigned_mut(&mut self) -> &mut [u8]
fn as_signed_mut(&mut self) -> &mut [i8]
impl IntSliceExt<u8, i8> for [i8]
fn as_unsigned(&self) -> &[u8]
fn as_signed(&self) -> &[i8]
fn as_unsigned_mut(&mut self) -> &mut [u8]
fn as_signed_mut(&mut self) -> &mut [i8]
impl IntSliceExt<u16, i16> for [u16]
fn as_unsigned(&self) -> &[u16]
fn as_signed(&self) -> &[i16]
fn as_unsigned_mut(&mut self) -> &mut [u16]
fn as_signed_mut(&mut self) -> &mut [i16]
impl IntSliceExt<u16, i16> for [i16]
fn as_unsigned(&self) -> &[u16]
fn as_signed(&self) -> &[i16]
fn as_unsigned_mut(&mut self) -> &mut [u16]
fn as_signed_mut(&mut self) -> &mut [i16]
impl IntSliceExt<u32, i32> for [u32]
fn as_unsigned(&self) -> &[u32]
fn as_signed(&self) -> &[i32]
fn as_unsigned_mut(&mut self) -> &mut [u32]
fn as_signed_mut(&mut self) -> &mut [i32]
impl IntSliceExt<u32, i32> for [i32]
fn as_unsigned(&self) -> &[u32]
fn as_signed(&self) -> &[i32]
fn as_unsigned_mut(&mut self) -> &mut [u32]
fn as_signed_mut(&mut self) -> &mut [i32]
impl IntSliceExt<u64, i64> for [u64]
fn as_unsigned(&self) -> &[u64]
fn as_signed(&self) -> &[i64]
fn as_unsigned_mut(&mut self) -> &mut [u64]
fn as_signed_mut(&mut self) -> &mut [i64]
impl IntSliceExt<u64, i64> for [i64]
fn as_unsigned(&self) -> &[u64]
fn as_signed(&self) -> &[i64]
fn as_unsigned_mut(&mut self) -> &mut [u64]
fn as_signed_mut(&mut self) -> &mut [i64]
impl IntSliceExt<usize, isize> for [usize]
fn as_unsigned(&self) -> &[usize]
fn as_signed(&self) -> &[isize]
fn as_unsigned_mut(&mut self) -> &mut [usize]
fn as_signed_mut(&mut self) -> &mut [isize]
impl IntSliceExt<usize, isize> for [isize]
fn as_unsigned(&self) -> &[usize]
fn as_signed(&self) -> &[isize]
fn as_unsigned_mut(&mut self) -> &mut [usize]
fn as_signed_mut(&mut self) -> &mut [isize]
impl<'a, 'b> Pattern<'a> for &'b [char]
Searches for chars that are equal to any of the chars in the array