
An algorithm for graph pattern-matching

Gabriel Valiente12 Conrado Mart́ınez2

1 Universität Bremen
Fachbereich Mathematik und Informatik

D-28334 Bremen, Germany
2 Technical University of Catalonia

Department of Software
E-08034 Barcelona, Catalonia, Spain

Abstract. Graph pattern-matching is a generalization of string match-
ing and two-dimensional pattern-matching that offers a natural frame-
work for the study of matching problems upon multi-dimensional struc-
tures. We present in this paper an algorithm for pattern-matching on
arbitrary graphs that is based on reducing the problem of finding a ho-
momorphic image of a pattern graph in a target graph, to that of finding
homomorphic images of every connected component of the pattern in
the target. For every connected component, the algorithm performs a
combinatorial search bounded by a pruning operator. The algorithm can
be applied to directed graphs as well as to undirected graphs, and it can
also be specialized to find isomorphic images only.

1 Introduction

This paper deals with graph pattern-matching, the problem of finding a homo-
morphic (or isomorphic) image of a given graph, called the pattern, in another
graph, called the target, and it is also known as the subgraph homomorphism
(or subgraph isomorphism) problem. As a generalization of string matching and
two-dimensional pattern-matching, it offers a natural framework for the study
of matching problems upon multi-dimensional structures.

A main drawback of graph pattern-matching, however, lies in its inherent
computational complexity. The subgraph isomorphism problem is known to be
NP-complete [6] and, as a matter of fact, a naive graph pattern-matching algo-
rithm, which generates each possible mapping from the n nodes in the pattern
to the m nodes in the target and tests whether these mappings are graph homo-
morphisms, requires in the worst case O(mn) tests [1, 18].

Most efforts have been then directed at finding efficient pattern-matching
algorithms for restricted classes of graphs [3, 5, 7, 8, 9, 10, 12, 15]. On the other
hand, effort has been also directed at finding useful heuristics for graph pattern-
matching, such as prunning the search tree [16] or the heuristic incorporated in
the PROGRES system [18]. The RETE string pattern-matching algorithm has
also been generalized to graph grammars [1], but it still requires in the worst
case O(mn) tests, although after an initial match has been found, subsequent
graph rewriting followed by graph pattern-matching becomes efficient.

More recently, further efforts have been directed at reducing the pattern-mat-
ching problem for graphs to an equivalent pattern-matching problem on smaller
partial subgraphs of both the source and the target graphs [2, 13].

An algorithm is presented in this paper that is based on decomposing the
pattern-matching problem along connected components of the pattern graph,
motivated by the fact that if a pattern graph has k connected components,
pattern matching along connected components would require in the worst case
O(mn/k) tests, which is much better than O(mn) for k > 1, since then mn/k �
mn for a large n. For every connected component, the algorithm performs a
combinatorial search bounded by a pruning operator.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tion and terminology used throughout the paper. Section 3 discusses the problem
of graph pattern-matching, and presents some theoretical results which allow to
develop a decomposition of the graph pattern-matching problem along connected
components. Section 4 presents the pattern-matching algorithm in detail. Ex-
perimental results are presented in Section 5. Finally, Section 6 presents the
main conclusions of this paper.

2 Graphs and graphs homomorphisms

We recall in this section some basic notions, which will be used in the next
section to develop an algorithm for graph pattern-matching.

Definition 1. A (directed) graph G = (V,B) consists of a set V and a relation
B ⊆ V × V . The elements of V are called nodes, and B is called the relation
associated to G. It is said that there is an arc from a node v to a node v′ if
(v, v′) ∈ B. A graph G = (V,B) is finite if the order |V | of G is finite, and it is
undirected if B is symmetric.

A finite graph G = (V,B) —actually, the relation B associated to the graph
G— can be represented by a boolean matrix A, where an element ai,j = true
(one) if (ai, aj) ∈ B, and it is false (zero) otherwise. We shall usually denote
the boolean matrix A and the relation B associated to a graph G = (V,B) by
the same name B.

Example 1. The graph G = (V,B) with V = {a, b, c, d, e} and

B = {(a, b), (b, b), (c, e), (d, a), (d, b), (e, c)}

can be seen as the following boolean matrix:

B =

a b c d e
a 0 1 0 0 0
b 0 1 0 0 0
c 0 0 0 0 1
d 1 1 0 0 0
e 0 0 1 0 0

Graph homomorphisms are structure-preserving relations over the relations
associated to the graphs; cf. [14].

Definition 2. A relation Φ ⊆ V × V ′ is a homomorphism from a graph G =
(V,B) to a graph G′ = (V ′, B′) if

ΦTΦ ⊆ I, I ⊆ ΦΦT , B ⊆ ΦB′ΦT ;

and it is also written Φ : G→ G′.

Example 2. The relation

Φ = {(a, x), (b, y), (c, x), (d, z), (e, z)}

is a homomorphism from the graph G = (V,B) with V = {a, b, c, d, e} and
B = {(a, b), (b, b), (c, e), (d, a), (d, b), (e, c)} to the graph G′ = (V ′, B′) with V ′ =
{x, y, z} and B′ = {(x, y), (x, z), (y, y), (z, x), (z, y)}:

B =

a b c d e
a 0 1 0 0 0
b 0 1 0 0 0
c 0 0 0 0 1
d 1 1 0 0 0
e 0 0 1 0 0

Φ =

x y z
a 1 0 0
b 0 1 0
c 1 0 0
d 0 0 1
e 0 0 1

B′ =

x y z
x 0 1 1
y 0 1 0
z 1 1 0

Proposition 3. Graph homomorphisms are closed under composition.

Proof. Let Φ : G → G′ and Φ′ : G′ → G′′ be two graph homomorphisms.
Then I ⊇ Φ′TΦ′ = Φ′T IΦ′ ⊇ Φ′TΦTΦΦ′ = (ΦΦ′)TΦΦ′; I ⊆ ΦΦT = ΦIΦT ⊆
ΦΦ′Φ′TΦT = ΦΦ′(ΦΦ′)T ; and B ⊆ ΦB′ΦT ⊆ ΦΦ′B′′Φ′TΦT = (ΦΦ′)B′′(ΦΦ′)T .
Therefore, ΦΦ′ : G→ G′′ is a graph homomorphism.

Definition 4. Let Φ : G → G′ be an injective graph homomorphism. Then G
is called a partial subgraph of G′. It is called a subgraph of G′, denoted by
G ⊆ G′, if B = ΦB′ΦT . Moreover, if G is a subgraph of G′ and V ⊆ V ′, then G
is also called the subgraph of G′ supported on V .

Example 3. Let G = (V,B) be a graph with V = {a, b, c, d} and B = {(a, c), (b,
a), (b, c), (c, d), (d, b)}. Then G′ = ({b, c, d}, B′) is a partial subgraph of G, while
G′′ = ({b, c, d}, B′′) is the subgraph of G supported on {b, c, d}:

B =

a b c d
a 0 0 1 0
b 1 0 1 0
c 0 0 0 1
d 0 1 0 0

B′ =

b c d
b 0 1 0
c 0 0 0
d 1 0 0

B′′ =

b c d
b 0 1 0
c 0 0 1
d 1 0 0

Proposition 5. Given two graphs G and G′ such that G ⊆ G′, every graph
homomorhism Φ′ : G′ → G′′ to a graph G′′ induces a graph homomorphism
Φ : G→ G′′.

Proof. It follows from graph homomorphisms being closed under composition.
Let Φ : G→ G′ be the inclusion homomorphism of G in G′. Then Φ = Φ′Φ′′ is
a graph homomorphism Φ : G→ G′′, by Proposition 3.

Proposition 6. Given two graphs G′ and G′′ such that G′ ⊆ G′′, every graph
homomorhism Φ′ : G → G′ from a graph G induces a graph homomorphism
Φ : G→ G′′.

Proof. It follows from graph homomorphisms being closed under composition.
Let Φ′′ : G′ → G′′ be the inclusion homomorphism of G′ in G′′. Then Φ = Φ′Φ′′

is a graph homomorphism Φ : G→ G′′, by Proposition 3.

3 Graph pattern-matching

Pattern-matching on graphs is the problem of finding a homomorphic or iso-
morphic image of a given graph, called the pattern, in another graph, called the
target. Since the image of the pattern is then a subgraph of the target, the
problem is also known as the subgraph isomorphism problem, although in some
application areas, for instance in graph transformation, the image of the pattern
need not necessarily be isomorphic and a homomorphic image suffices.

Since subgraph isomorphism is known to be NP-complete [6], most efforts
have been directed either at finding efficient pattern-matching algorithms for
restricted classes of graphs, at finding useful heuristics for graph pattern-match-
ing, or at reducing the pattern-matching problem along partial subgraphs of the
pattern, as already mentioned in Section 1. A simpler reduction of the pattern-
matching problem, however, can be performed when the pattern graph is not
connected, as stated by the following theorem.

Theorem 7. Pattern-matching from a non-connected pattern to a target is equiv-
alent to pattern-matching from every connected component of the pattern to con-
nected components of the target.

Proof. Let G = (V,B) be a non-connected pattern graph and let G′ = (V ′, B′)
be a target graph. It can be taken, without loss of generality,

B =
(
A 0
0 C

)
and B′ =

(
X Y
Y T Z

)
.

Then it suffices to consider graph homomorphisms of the form

Φ =
(

Φ1 0
0 Φ4

)
,

and the conditions for graph homomorphism become:(
ΦT1 0
0 ΦT4

)(
Φ1 0
0 Φ4

)
=
(

ΦT1 Φ1 0
0 ΦT4 Φ4

)
⊆
(
I 0
0 I

)

(
I 0
0 I

)
⊆
(

Φ1 0
0 Φ4

)(
ΦT1 0
0 ΦT4

)
=
(

Φ1ΦT1 0
0 Φ4ΦT4

)
(
A 0
0 C

)
⊆
(

Φ1 0
0 Φ4

)(
X Y
Y T Z

)(
ΦT1 0
0 ΦT4

)
=
(

Φ1XΦT1 Φ1Y ΦT4
Φ4Y

TΦT1 Φ4ZΦT4

)
That is, there exists a graph homomorphism Φ : G → G′ if, and only if, there
exist graph homomorphisms Φ1 : A→ X and Φ4 : C → Z.

Since a graph homomorphism from a subgraph of the pattern to a subgraph
of the target extends to the whole target, as stated by Proposition 6, we also
have the following lemma.

Lemma 8. Pattern-matching from a non-connected pattern to a target is equiv-
alent to pattern-matching from every connected component of the pattern to the
whole target.

Proof. Let G = (V,B) be a non-connected pattern graph and let G′ = (V ′, B′)
be a target graph. It can be taken, without loss of generality, G to be the
disjoint union of two (not necessarily connected) components G1 = (V1, B1) and
G2 = (V2, B2), such that

B =
(
B1 0
0 B2

)
It has to be shown that there is a graph homomorphism Φ : G→ G′ if, and only
if, there are graph homomorphisms Φ1 : G1 → G′ and Φ2 : G2 → G′.

(⇒) It follows from graph homomorphisms being closed under composition.
Let Φ′1 : G1 → G be the inclusion homomorphism of G1 in G. Then Φ1 = Φ′1Φ
is a graph homomorphism Φ1 : G1 → G′, by Proposition 3. In the same way, let
Φ′2 : G2 → G be the inclusion homomorphism of G2 in G. Then Φ2 = Φ′2Φ is a
graph homomorphism Φ2 : G2 → G′, by Proposition 3.

(⇐) Let Φ1 : G1 → G′ and Φ2 : G2 → G′ be graph homomorphisms. It has
to be show that there is a graph homomorphism Φ : G→ G′. Let

Φ =
(

Φ1

Φ2

)
Then the first condition for graph homomorphism is satisfied,

ΦTΦ =
(

Φ1

Φ2

)T(Φ1

Φ2

)
=
(

ΦT1 ΦT2
)(Φ1

Φ2

)
= ΦT1 Φ1 + ΦT2 Φ2 ⊆ I

as well as the second condition,

I ⊆ Φ1ΦT1 + Φ2ΦT2 =
(

Φ1

Φ2

)(
ΦT1 ΦT2

)
=
(

Φ1

Φ2

)(
Φ1

Φ2

)T
= ΦΦT

and the third condition(
B1 0
0 B2

)
⊆
(

Φ1B
′ΦT1 Φ1B

′ΦT2
Φ2B

′ΦT1 Φ2B
′ΦT2

)
=
(

Φ1

Φ2

)
B′
(

ΦT1
ΦT2

)
= ΦB′ΦT

is also satisfied. Therefore, Φ : G→ G′ is a graph homomorphism.

Notice that such an equivalence does not hold anymore if the pattern is a
connected graph.

4 The graph pattern-matching algorithm

Results from the previous section allow to decompose the graph pattern-match-
ing problem along connected components of the pattern graph.

In this section, a basic tree-search algorithm is presented which can be applied
to any pattern graph. The algorithm is then improved by a pruning operator that
allow a significant prunning of the search tree. The improved algorithm is finally
integrated into a pattern-matching algorithm along connected components.

4.1 Basic search algorithm

Graph pattern-matching can be understood as tree search; cf. [16]. Let G =
(V,B) be a pattern graph with |V | = n, and let G′ = (V ′, B′) be a target graph
with |V ′| = m. A graph homomorphism Φ : G→ G′ is given by a boolean n×m
matrix satisfying the conditions for graph homomorphism given in Definition 2;
such a matrix will have exactly one true (one) in each row, although it may
have more than one true in each column. Candidates for graph homomorphism
are then the leaves of the following n-depth m-ary tree (drawn for n = 2 and
m = 3):

0
(

111
111

)
1

oooooooooooooooo

2
m=3

OOOOOOOOOOOOOOOO

1
(

100
111

)
1

2 m=3

444444

(
010
111

)
1

2 m=3

444444

(
001
111

)
1

2 m=3

444444

n = 2
(

100
100

) (
100
010

) (
100
001

) (
010
100

) (
010
010

) (
010
001

) (
001
100

) (
001
010

) (
001
001

)
In particular, all leaves will be graph homomorphisms when the pattern graph

is discrete, and no leaf will be a graph homomorphism when matching a non-
discrete pattern to a discrete target.

Any traversal of such a tree could be used to enumerate all leaves and test
them for homomorphism, although the problem of finding one homomorphism
is best solved by performing a depth-first search.

An iterative search algorithm is sketched in Fig. 1. Starting off with an
n×m matrix whose elements are all true (one), the algorithm returns the first
leaf of the tree (in a depth-first search) that satisfies the conditions for graph

function homomorphism(P, T)
return search(setup(P, T), P, T)

function setup(P, T)
for i = 1 to n do

for j = 1 to m do
H[i, j]← true

end for
end for
return H

function search(H,P, T)
if H is the one matrix then

i← 0 { build first leaf }
else

i← n { H is already a leaf; build next leaf }
end if
repeat

if i < n then
i← i+ 1
for j = 1 to m do

H[i, j]← j = 1 { map node i to node 1 }
end for

else
while i ≥ 1 and H[i,m] do

for j = 1 to m do
H[i, j]← true { restore i-th row }

end for
i← i− 1

end while
if i = 0 then

H ← null matrix
else

j ← 1
while not H[i, j] do

j ← j + 1
end while
H[i, j]← false { unmap node i to node j }
H[i, j + 1]← true { map node i to node j + 1 }

end if
end if

until i = n and test(H,P, T) or i = 0
return H

Fig. 1. Basic search algorithm

homomorphism, if any, and returns the null matrix if no graph homomorphism
is found.

The test function, sketched in Fig. 2, implements the conditions for graph
homomorphism stated in Definition 2. I denotes the identity boolean matrix.
This function can also be specialized to the case of subgraph isomorphism.

function test(H,P, T)
if HT ·H is included in I then

if I is included in H ·HT then
return P is included in H · T ·HT

end
end
return false

Fig. 2. Test for subgraph homomorphism

The search for a homomorphism can also be performed with a previous ho-
momorphism as start matrix, returning then either the next leaf of the tree that
satisfies the conditions for graph homomorphism, or the null matrix if no further
graph homomorphism is found. In Fig. 3 a procedure is sketched for enumerating
all homomorphisms.

procedure enumerate(P, T)
H ← setup(P, T)
repeat

H ← search(H,P, T)
until H is the null matrix

Fig. 3. Enumeration algorithm

4.2 Pruning the search tree

The basic tree-search algorithm can be improved in various ways. For instance,
branches could be pruned as soon as a mapping of part of the pattern nodes to
the target violates the requirements of graph homomorphisms; the start n×m
matrix could be rearranged in such a way that branches could be pruned sooner
(in a depth-first search); some entries in the start matrix could be set to false
(zero) if the corresponding mapping of a pattern node to a target node would
not lead to a graph homomorphism; etc.

An improved algorithm is sketched in Fig. 4 which takes into account the fact
that the image of a node which is adjacent to some other node has to be adjacent
to the image of the other node; cf. [16]. The ismapable function, sketched in Fig.
5, is called by the mapable function to find the next node j to which a given
node i can be mapped. This function can be specialized to the case of subgraph

function search(H,P, T)
if H is the one matrix then

i← 0 { build first leaf }
j ← 0

else
i← n { H is already a leaf; build next leaf }
j ← 1
while not H[i, j] do

j ← j + 1
end while

end
repeat

if i 6= n then
i← i+ 1
j ← 1

else
j ← j + 1

end if
while not mapable(H,P, T, i, j) and i 6= 0 do

for k = 1 to m do
H[i, k]← true { restore i-th row }

end for
i← i− 1
if i 6= 0 then

j ← 1
while not H[i, j] do

j ← j + 1
end while
j ← j + 1

end if
end while
if i 6= 0 then

for k = 1 to m do
H[i, k]← j = k { map node i to node j }

end for
else

H ← null matrix
end if

until i = 0 or (i = n and test(H,P, T))
return H

function mapable(H,P, T, i,var j)
while j ≤ m and not ismapable(H,P, T, i, j) do

j ← j + 1
end while
return j 6= m+ 1

Fig. 4. Search algorithm improved by pruning the search tree

function ismapable(H,P, T, i, j)
found← false
x← 1
while x ≤ i and not found do

y ← image(H,x)
if P [i, x] and not T [j, y] or P [x, i] and not T [y, j] then

found← true { i cannot be mapped to j }
end if { because x is not adjacent to y }
x← x+ 1

end while
return not found

function image(H,x)
y ← 1
while not H[x, y] do

y ← y + 1
end while
return y

Fig. 5. Pruning operator for subgraph homomorphism

function ismapable(H,P, T, i, j)
found← false
x← 1
while x ≤ i and not found do

if H[x, j] then
found← true { i cannot be mapped to j }

else { because x has already been mapped to j }
y ← image(H,x)
if P [i, x] and not T [j, y] or P [x, i] and not T [y, j] then

found← true { i cannot be mapped to j }
end if { because x is not adjacent to y }

end if
x← x+ 1

end while
return not found

Fig. 6. Pruning operator for subgraph isomorphism

isomorphism, by also testing that no other node x has already been mapped to
node j, as sketched in Fig. 6.

Further considerations could also be taken into account in the pattern-match-
ing algorithm, some of which belong to specific application domains.

1. In the case of subgraph isomorphism, the net degree of the image of a node
cannot be less than the net degree of the node; cf. [16].

2. The distance between the images of two nodes cannot be greater than
the distance between the nodes. In particular, in the case of subgraph
isomorphism, these distances have to coincide.

3. In the case of labeled graphs, not only the structure of the pattern but also
the labeling of nodes and arcs have to match the target. Then the image
of a labeled node or arc has to carry the same label as the node or arc.

4. In the case of algebraic graph transformation, pattern nodes and arcs can
be partitioned into the set candidates to be removed and the set of candi-
dates to be preserved during the transformation of the target graph. Then
the image of a node or arc which is a candidate to be removed cannot be
also the image of a node or arc which is a candidate to be preserved, as
stated by the identification condition in double-pushout graph transforma-
tion; cf. [4].

5. Also in algebraic graph transformation, consider nodes and arcs which are
candidates to be removed first. Since a node to be removed can only be
adjacent to a node of any kind through an arc to be removed, while a node
to be preserved can be adjacent to a node to be preserved through an arc
of any kind, or to a node to be removed through an arc to be removed, it
may improve the effect of other heuristics. This heuristic follows from the
dangling condition in double-pushout graph transformation; cf. [4].

4.3 Improved search algorithm

The algorithm for decomposing the pattern-matching problem along connected
components of the pattern graph is sketched in Fig. 7. The decompose function
returns the first graph homomorphism found from the pattern graph to the
target graph, if any, and returns the null matrix if no graph homomorphism is
found.

The partition function, sketched in Fig. 8, computes the transitive closure of
the pattern graph, following [17], in order to find all connected components, and
returns a vector assigning no each node the number of the connected component
to which it belongs. Connected components are extracted out of the pattern
graph by the submatrix function, sketched in Fig. 9.

Composition of the images of the connected components of the pattern in the
target is done in an incremental fashion, where variable hash is used to compute
the position of a connected component node in the whole pattern graph.

function decompose(H,P, T)
R← partition(P)
conn← 0
for i = 1 to n do

if R[i] > conn then
conn← R[i] { number of connected components }

end if
end for
failed← false
i← 1
while i ≤ conn and not failed do { i-th connected component }

N ← submatrix(P,R, i)
S ← search(one matrix, N, T)
if S is the null matrix then

failed← true { subsearch has failed }
else { the whole search fails }

hash← 0
for j = 1 to number of rows in S do

repeat
hash← hash + 1

until R[hash] = i
for k = 1 to n do

H[hash, k]← S[j, k] { assign hash-th row in S }
end for { to j-th row in H }

end for
end if
i← i+ 1

end while
if failed then

return null matrix
else

return H
end if

Fig. 7. Search algorithm along connected components of the pattern graph

function partition(P)
for i = 1 to n do

for j = 1 to n do
if P [j, i] then

for k = 1 to n do
P [j, k]← P [j, k] or P [i, k] { transitive closure of P }

end for
end if

end for
end for
for i = 1 to n do

R[i]← 0
end for
k ← 0 { number of next connected }
for i = 1 to n do { component to be assigned }

found← false
j ← 1
while not found and j ≤ n do

if P [i, j] then
found← true { there is some node j }

end if { adjacent to node i }
j ← j + 1

end while
if found then { i-th node is not isolated }

found← false
j ← 1
while not found and j ≤ n do

if P [i, j] and R[j] = 0 then
found← true { there is some node j }

end if { adjacent to node i }
j ← j + 1 { that has to be assigned to }

end while { a new connected component }
if found then

k ← k + 1
end if
for j = 1 to n do

if P [i, j] and R[j] = 0 then
R[j]← k { assign j-th node }

end if { to k-th connected component }
end for

else { i-th node is isolated }
k ← k + 1
R[i]← k { assign i-th node }

end if { to k-th connected component }
end for
return R

Fig. 8. Partition of a graph into connected components

function submatrix(P,R, i)
for j = 1 to n do

G[j]← R[j] = i
end for
N ← null matrix
for i = 1 to n do

if G[i] then
for j = 1 to n do

if P [i, j] then
N [subindex(G, i), subindex(G, j)]← true

end if
end for

end if
end for
return N

function subindex(G, i)
j ← 0
for k = 1 to i do

if G[k] then
j ← j + 1

end if
end for
return j

Fig. 9. Extraction of a connected component

5 Experimental results

The algorithm has been implemented in Oberon-2, and a series of experiments
has been carried out on random pattern and target graphs.

Random graphs have been generated using the multiplicative linear congru-
ential random number generator algorithm [11]. Table 1 shows the number of
arcs, the number of connected components and the average connected compo-
nent order versus arc probability for random directed graphs with 100 nodes. For
each variable the mean and the standard deviation, which have been estimated
over a sample of 50 observations, are given.

Table 1. Number of arcs, number of connected components and average connected
component order versus arc probability for random directed graphs with 100 nodes

arc no. arcs no. components avg. comp. order
probability mean std. dev. mean std. dev. mean std. dev.

0.05 255 16.20 28.50 3.66 2.94 0.43
0.10 502 20.20 14.60 3.15 6.58 1.88
0.15 757 24.70 9.92 2.42 10.10 2.55
0.20 1010 28.40 7.14 1.95 14.70 4.84
0.25 1260 31.20 5.56 1.70 19.70 8.35
0.30 1510 31.70 4.82 1.42 22.50 8.09
0.35 1770 32.40 4.08 1.26 28.10 16.20
0.40 2020 33.70 3.42 1.21 34.80 19.50
0.45 2270 37.60 2.90 1.16 41.50 21.90
0.50 2530 41.80 2.62 1.12 47.60 26.10

Matching experiments have been carried out on random pattern graphs of
order n and random target graphs of order m, for selected values m and n such
that n ≥ m and for a fixed arc probability value, same for pattern and target.
For each generated pattern and target random graphs, the boolean matrix of
the pattern has been added to the boolean matrix of the target, a procedure
already followed by [16], and null pattern matrices have been discarded, since
otherwise all leaves of the search tree would be graph homomorphisms and all
the algorithms would find the same leaf first, namely the first leaf in a depth-first
search.

Tables 2 and 3 show statistics for the number of leaves visited and the time
(in seconds) taken to find one homomorphism from a random pattern graph to
a random target graph, both with edge probability 0.25, using the basic search
algorithm (search column) and using the algorithm improved by pruning the
search tree (prune column). Table 3 also shows time statistics when decomposing
the problem along connected components of the pattern graph and pruning the
search tree for each connected component (decompose column). For each variable
the mean and the standard deviation, which have been estimated over a sample
of 50 observations, are given. Time statistics correspond to a Sun SPARCstation
5 running SPARC-Oberon (TM) V4 Release 2.9.1 for Solaris 2.

Table 2. Number of leaves visited while searching for a homomorphism

order order search prune
of P of T mean s. d. mean s. d.

6 6 397 618 67 281
6 8 1 400 1 893 57 195
6 10 3 713 4 756 184 895
6 12 7 196 10 042 99 462

Table 3. Time in seconds taken to find one homomorphism

order order search prune decompose
of P of T mean s. d. mean s. d. mean s. d.

6 6 295 459 51 213 1 1
6 8 1 516 2 052 62 211 2 5
6 10 5 527 7 100 278 1 326 4 7
6 12 14 036 19 647 204 957 12 28

6 Conclusion

Graph pattern-matching, also known as the subgraph homomorphism problem, is
dealt with in this paper. An algorithm is presented that is based on reducing the
problem of finding a homomorphic image of a pattern graph in a target graph,
to that of finding homomorphic images of every connected component of the
pattern in the target. For each connected component, the algorithm performs a
combinatorial search bounded by a pruning operator.

Experimental results have shown that search for a homomorphism behaves
much better after decomposition along connected components for reasonably
dense pattern graphs, for instance for random directed pattern graphs with arc
probability lower than 0.4. For arc probability 0.25, which corresponds to the
subgraph isomorphisms experiments reported in [16], searching for a homomor-
phism from a pattern graph of order 100 is reduced to about five searches for a
homomorphism from a subgraph of the pattern of order about 20.

The algorithm has been also specialized to find isomorphic images only. In
this case, however, the pattern-matching problem cannot be decomposed along
connected components of the pattern graph, although it can be decomposed
along connected components of the target graph; cf. [16].

Acknowledgement

We thank F. Drewes and H.-J. Kreowski for detailed comments on preliminary
versions of this article and for substantial discussions about the subject. We also
acknowledge with thanks the anonymous referees, whose suggestions have lead
to a substantial improvement of the paper.

References

1. H. Bunke, T. Glauser, and T.-H. Tran. An efficient implementation of graph
grammars based on the RETE matching algorithm. In Proc. 4th Int. Workshop on
Graph-Grammars and their Application to Computer Science and Biology, volume
532 of Lecture Notes in Computer Science, pages 174–189. Springer-Verlag, 1991.

2. P. Burmeister, F. Rosselló, and G. Valiente. Double-pushout hypergraph rewriting
through free completions. Technical Report LSI-96-56-R, Technical University of
Catalonia, 1996.

3. H. Dörr. Efficient graph rewriting and its implementation, volume 922 of Lecture
Notes in Computer Science. Springer-Verlag, 1995.

4. H. Ehrig. Introduction to the algebraic theory of graph grammars. In Proc. 1st
Int. Workshop on Graph-Grammars and their Application to Computer Science and
Biology, volume 73 of Lecture Notes in Computer Science, pages 1–69. Springer-
Verlag, 1979.

5. J. Fu. Pattern matching in directed graphs. In Proc. 6th Annual Symposium
on Combinatorial Pattern Matching, volume 937 of Lecture Notes in Computer
Science, pages 64–77. Springer-Verlag, 1995.

6. M. R. Garey and D. S. Johnson. Computers and intractability: A guide to NP-
completeness. Freeman, 1979.

7. A. Gupta and N. Nishimura. Characterizing the complexity of subgraph isomor-
phism for graphs of bounded path-width. In Proc. 15th Annual Symposium on
Theoretical Aspects of Computer Science, volume 1046 of Lecture Notes in Com-
puter Science, pages 453–464. Springer-Verlag, 1997.

8. A. Lingas. Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theoretical Computer Science, 63:295–302, 1989.

9. A. Lingas and M. M. Syslo. A polynomial-time algorithm for subgraph isomor-
phism of two-connected series-parallel graphs. In Proc. 15th Int. Colloquium on
Automata, Languages, and Programming, Lecture Notes in Computer Science,
pages 394–409. Springer-Verlag, 1988.

10. D. Matula. Subtree isomorphism in O(n5/2). Annals of Discrete Mathematics,
2:91–106, 1978.

11. S. K. Park and K. W. Miller. Random number generations, good ones are hard to
find. Commun. ACM, 31:1192–1201, 1988.

12. S. W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM
Journal of Computing, 6:730–732, 1977.

13. F. Rosselló and G. Valiente. Single-pushout hypergraph rewriting through free
completions. Technical Report LSI-97-12-R, Technical University of Catalonia,
1997.

14. G. Schmidt and T. Ströhlein. Relationen und Graphen. Springer-Verlag, 1989.

15. M. M. Syslo. The subgraph isomorphism problem for outerplanar graphs. Theo-
retical Computer Science, 17:91–97, 1982.

16. J. R. Ullmann. An algorithm for subgraph isomorphism. J. ACM, 23(1):31–42,
1976.

17. S. Warshall. A theorem on boolean matrices. J. ACM, 9:11–12, 1962.

18. A. Zündorf. Graph pattern-matching in PROGRES. In Proc. 5th Int. Workshop
on Graph Grammars and their Application to Computer Science, volume 1073 of
Lecture Notes in Computer Science, pages 454–468. Springer-Verlag, 1996.

This article was processed using the LATEX 2ε macro package with CUP CS class

