
PSTricks

pst-tree

Nodes and Trees; v.1.10

January 25, 2009

Documentation by Package author(s):

Herbert Voß Timothy Van Zandt

Herbert Voß

Contents 2

Contents

1 Overview 4

2 Tree Nodes 4

3 Tree orientation 7

4 The distance between successors 8

5 Spacing between the root and successors 10

6 Edges 10

7 Edge and node labels 13

8 Details 15

9 The scope of parameter changes 18

10List of all optional arguments for pst-tree 20

References 20

The node and node connections are perfect tools for making trees, but positioning

the nodes using \rput would be rather tedious.1 The file pst-tree.tex/pstree.sty

contains a high-level interface for making trees.

It should be noted that the correct result is not guaranteed with every dvips driver.

This package was written for Rokicki’s dvips programme, which is practically part of

every TEX distribution.

1 Unless you have a computer program that generates the coordinates.

1 Overview 4

1 Overview

The tree commands are

\pstree{<root>}{<successors>}

TEX version LATEX version

\psTree{<root>} \begin{psTree}{root}

<successors> <successors>

\endpsTree \end{psTree}

These do the same thing, but just have different syntax. \psTree is the “long” version.

These macros make a box that encloses all the nodes, and whose baseline passes

through the center of the root. Most of the nodes has a variant for use within a tree

and are called tree nodes (see Section 2).

Trees and tree nodes are called tree objects. The root of a tree should be a sin-

gle tree object, and the successors should be one or more tree objects. Here is an

example with only nodes:

root

1 \pstree[radius=3pt]{\Toval{root}}{\TC

* \TC* \TC* \TC*}

There is no difference between a terminal node and a root node, other than their

position in the \pstree{} command.

Here is an example where a tree is included in the list of successors, and hence

becomes subtree:

1 \pstree[radius=3pt]{\Tp}{%

2 \TC*
3 \pstree{\TC}{\TC* \TC*}

4 \TC*}

2 Tree Nodes

In each case, the name of the tree node is formed by omitting "‘node"’ from the end

of the name and adding "T" at the beginning. For example, \psovalnode becomes

\Toval. Here is the list of such tree nodes:

2 Tree Nodes 5

\Tp * [Options]

\Tc * [Options] {dim}

\TC * [Options]

\Tf * [Options]

\Tdot * [Options]

\Tr * [Options] {stuff}

\TR * [Options] {stuff}

\Tcircle * [Options] {stuff}

\TCircle * [Options] {stuff}

\Toval * [Options] {stuff}

\Tdia * [Options] {stuff}

\Ttri * [Options] {stuff}

The syntax of a tree node is the same as of its corresponding “normal” node, except

that:

• There is always an optional argument for setting graphics parameters, even if

the original node did not have one;

• There is no argument for specifying the name of the node;

• There is never a coordinate argument for positioning the node; and

• To set the reference point with \Tr, set the ref parameter.

Figure 1 gives a reminder of what the nodes look like.

The difference between \Tr and \TR (variants of \rnode and \Rnode, respectively)

is important with trees. Usually, you want to use \TR with vertical trees because the

baselines of the text in the nodes line up horizontally. For example:

X

˜̃
X x y

1 $

2 \pstree[nodesepB=3pt]{\Tcircle{X}}{%

3 \TR{\tilde{\tilde{X}}}

4 \TR{x}

5 \TR{y}}

6 $

Compare with this example, which uses \Tr:

X

˜̃
X x y

1 $

2 \pstree[nodesepB=3pt]{\Tcircle{X}}{%

3 \Tr{\tilde{\tilde{X}}}

4 \Tr{x}

5 \Tr{y}}

6 $

There is also a null tree node:

\Tn

It is meant to be just a place holder. Look at the tree in Figure page 6. The bottom

row has a node missing in the middle. \Tn{} was used for this missing node.

2 Tree Nodes 6

Tree nodes

\Tp

\Tc
\TC

\Tcircle b

\Tdot
\TCircle \Toval \Ttri \Tdia

\Tf

\Tr \TR

1 \small

2 \psset{armB=1cm, levelsep=3cm, treesep=-3mm, angleB=-90, angleA=90, nodesepA=3pt}

3 \def\s#1{#1~{\tt\string#1}}\def\b#1{#1{\tt\string#1}}\def\psedge#1#2{\ncangle

{#2}{#1}}

4 \psTree[treenodesize=1cm]{\Toval{Tree nodes}}

5 \s\Tp\Tc{.5}~{\tt\string\Tc} \s\TC

6 \psTree[levelsep=4cm,armB=2cm]{\Tp[edge=\ncline]}

7 \b\Tcircle \s\Tdot

8 \TCircle[radius=1.2]{\tt\string\TCircle}

9 \Tn \b\Toval \b\Ttri \b\Tdia

10 \endpsTree

11 \s\Tf \b\Tr \b\TR

12 \endpsTree

Figure 1: The tree nodes.

There is also a special tree node that doesn’t have a “normal” version and that can’t

be used as the root node of a whole tree:

\Tfan * [Options]

This draws a triangle whose base is fansize and whose opposite corner is the prede-

cessor node, adjusted by the value of nodesepA and offsetA. For example:

3 Tree orientation 7

11

⊕

⊕

⊕

1 \pstree[dotstyle=oplus,dotsize=8pt,

nodesep=2pt]{\Tcircle{11}}{%

2 \Tdot

3 \pstree{\Tfan}{\Tdot}

4 \pstree{\Tdot}{\Tfan[linestyle=

dashed]}}

3 Tree orientation

Trees can grow down, up, right or left, depending on the treemode= D, U, R, or L

parameter.

Here is what the previous example looks like when it grows to the right:

11

⊕

⊕

⊕

1 \pstree[dotstyle=oplus,dotsize=8pt,

2 nodesep=2pt,treemode=R]

3 {\Tcircle{11}}{%

4 \Tdot

5 \pstree{\Tfan}{\Tdot}

6 \pstree{\Tdot}{\Tfan[linestyle=dashed]}}

You can change the treemode in the middle of the tree. For example, here is a tree

that grows up, and that has a subtree which grows to the left:

b

⊗

1

2

⊗

3 4

1 \footnotesize

2 \pstree[treemode=U,dotstyle=otimes,dotsize=8pt

,nodesep=2pt]

3 {\Tdot}{%

4 \pstree[treemode=L]{\Tdot}{\Tcircle{1} \

Tcircle{2}}

5 \pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Since you can change a tree’s orientation, it can make sense to include a tree

(<treeB>) as a root node (of <treeA>). This makes a single logical tree, whose root

is the root of <treeB>, and that has successors going off in different directions, de-

pending on whether they appear as a successor to <treeA> or to <treeB>.

rootB

A1 A2

1 \pstree{\pstree[treemode=L]{\Tcircle{root}}{\

Tr{B}}}{%

2 \Tr{A1}

3 \Tr{A2}}

4 The distance between successors 8

On a semi-related theme, note that any node that creates an LR-box can contain a

tree. However, nested trees of this kind are not related in any way to the rest of the

tree. Here is an example:

b

a b

1 \psTree{\Tcircle{%

2 \pstree[treesep=0.4,levelsep=0.6,

3 nodesepB=-6pt]{\Tdot}{%

4 \TR{a} \TR{b}}}}

5 \TC

6 \TC

7 \endpsTree

When the tree grows up or down, the successors are lined up from left to right

in the order they appear in \pstree. When the tree grows to the left or right, the

successors are lined up from top to bottom. As an afterthought, you might want to

flip the order of the nodes. The keyword treeflip=true/falselet’s you do this. For

example:

b

⊗
1

2

⊗

34

1 \footnotesize

2 \pstree[treemode=U,dotstyle=otimes,dotsize=8pt,

3 nodesep=2pt,treeflip=true]{\Tdot}{%

4 \pstree[treemode=R]{\Tdot}{\Tcircle{1} \

Tcircle{2}}

5 \pstree{\Tdot}{\Tcircle{3} \Tcircle{4}}}

Note that I still have to go back and change the treemode of the subtree that used to

grow to the left.

4 The distance between successors

The distance between successors is set by the key treesep. The rest of this section de-

scribes ways to fine-tune the spacing between successors. You can change the method

for calculating the distance between subtrees by setting the treefit=tight/loose

parameter. Here are the two methods:

tight When treefit=tight , which is the default, treesep is the minimum distance

between each of the levels of the subtrees.

loose When treefit=loose , treesep is the distance between the subtrees’ bound-

ing boxes. Except when you have large intermediate nodes, the effect is that the

horizontal distance (or vertical distance, for horizontal trees) between all the

terminal nodes is the same (even when they are on different levels).2

Compare:

2 When all the terminal nodes are on the same level, and the intermediate nodes are not wider than

the base of their corresponding subtrees, then there is no difference between the two methods.

4 The distance between successors 9

With treefit=loose , trees take up more space, but sometimes the structure of the

tree is emphasized.

Sometimes you want the spacing between the centers of the nodes to be regu-

lar even though the nodes have different sizes. If you set treenodesize to a non-

negative value, then PSTricks sets the width (or height+depth for vertical trees) to

treenodesize, for the purpose of calculating the distance between successors.

For example, ternary trees look nice when they are symmetric, as in the following

example:

x = y x1 = y1 x11 = y11

1 \pstree[nodesepB=-8pt,treenodesize=.85]{\Tc{3

pt}}{%

2 \TR{$x=y$}

3 \TR{$x_1=y_1$}

4 \TR{$x_{11}=y_{11}$}}%$

Compare with this example, where the spacing varies with the size of the nodes:

x = y x1 = y1 x11 = y11

1 \pstree[nodesepB=-8pt]{\Tc{3pt}}{%

2 \TR{$x=y$}

3 \TR{$x_1=y_1$}

4 \TR{$x_{11}=y_{11}$}}%$

Finally, if all else fails, you can adjust the distance between two successors by

inserting \tspace{length} between them:

foo and bar

1 \pstree{\Tc{3pt}}{%

2 \Tdia{foo}

3 \tspace{-0.5}

4 \Toval{and}

5 \Ttri{bar}}

5 Spacing between the root and successors 10

5 Spacing between the root and successors

The distance between the center lines of the tree levels is levelsep. If you want the

spacing between levels to vary with the size of the levels, use the * convention. Then

levelsep is the distance between the bottom of one level and the top of the next level

(or between the sides of the two levels, for horizontal trees).

Note: PSTricks has to write some information to your .aux file if using LATEX, or to

\jobname.pst otherwise, in order to calculate the spacing. You have to run your input

file a few times before PSTricks gets the spacing right.

trees. Compare the following example:

George Alexander Kopf VII

Barry Santos

James Kyle

Ann Ada

Terri Maloney

Uwe Kopf

Vera Kan

1 \def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}

2 \pstree[treemode=R,levelsep=*1cm]{\Tr{George Alexander Kopf VII}}{%

3 \pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}

4 \pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

with this one, were the spacing between levels is fixed:

George Alexander Kopf VII

Barry Santos

James Kyle

Ann Ada

Terri Maloney

Uwe Kopf

Vera Kan

1 \def\psedge#1#2{\ncdiagg[nodesep=3pt,angleA=180,armA=0]{#2}{#1}}

2 \pstree[treemode=R,levelsep=3cm]{\Tr{George Alexander Kopf VII}}{%

3 \pstree{\Tr{Barry Santos}}{\Tr{James Kyle} \Tr{Ann Ada}}

4 \pstree{\Tr{Terri Maloney}}{\Tr{Uwe Kopf} \Tr{Vera Kan}}}

6 Edges

Right after you use a tree node command, \pssucc is equal to the name of the node,

and \pspred is equal to the name of the node’s predecessor. Therefore, you can draw

a line between the node and its predecessor by inserting, for example,

\ncline{\pspred}{\pssucc}

To save you the trouble of doing this for every node, each tree node executes

\psedge{\pspred}{\pssucc}

6 Edges 11

The default definition of \psedge is \ncline, but you can redefine it as you please

with \def or LATEX’s \renewcommand.

For example, here I use \ncdiag, with armA=0, to get all the node connections to

emanate from the same point in the predecessor. LATEX users can instead type:

\renewcommand{\psedge}{\ncdiag[armA=0,angleB=180,armB=1cm]}

K

L

M

N

1 \def\psedge{\ncdiag[armA=0,angleB=180,armB=1cm

]}

2 \pstree[treemode=R,levelsep=3.5cm,framesep=2pt

]{\Tc{6pt}}{%

3 \small \Tcircle{K} \Tcircle{L} \Tcircle{M}

\Tcircle{N}}

Here is an example with \ncdiagg. Note the use of a negative armA value so that

the corners of the edges are vertically aligned, even though the nodes have different

sizes:

z1 ≤ y

z1 < y ≤ z2

z2 < y ≤ x

x < y

1 $

2 \def\psedge#1#2{\ncdiagg[angleA=180,armA=1cm,nodesep=4pt]{#2}{#1}}

3 % Or: \renewcommand{\psedge}[2]{ ... }

4 \pstree[treemode=R, levelsep=5cm]{\Tc{3pt}}{%

5 \Tr{z_1\leq y} \Tr{z_1<y\leq z_2} \Tr{z_2<y\leq x} \Tr{x<y}

6 }

7 $

Another way to define \psedge{} is with the edge parameter. Be sure to enclose

the value in braces "" if it contains commas or other parameter delimiters. This gets

messy if your command is long, and you can’t use arguments like in the preceding

example, but for simple changes it is useful. For example, if I want to switch between a

few node connections frequently, I might define a command for each node connection,

and then use the edge parameter.

6 Edges 12

1 \def\dedge{\ncline[linestyle=dashed]}

2 \pstree[treemode=U,radius=2pt]{\Tc{3pt}}{%

3 \TC*[edge=\dedge]

4 \pstree{\Tc{3pt}}{\TC*[edge=\dedge] \TC*}

5 \TC*}

You can also set edge=none to suppress the node connection.

If you want to draw a node connection between two nodes that are not direct prede-

cessor and successor, you have to give the nodes a name that you can refer to, using

the name parameter. For example, here I connect two nodes on the same level:

nature

1 \pstree[nodesep=3pt,radius=2pt]{\Toval{nature

}}{%

2 \pstree{\Tc[name=top]{3pt}}{\TC* \TC*}

3 \pstree{\Tc[name=bot]{3pt}}{\TC* \TC*}}

4 \ncline[linestyle=dashed]{top}{bot}

We conclude with the more examples.

root

X

Y

Z

1 \def\psedge{\nccurve[angleB=180, nodesepB=3pt

]}

2 \pstree[treemode=R, treesep=1.5, levelsep=3.5]

%

3 {\Toval{root}}{\Tr{X} \Tr{Y} \Tr{Z}}

root

x y z

1 \pstree[nodesepB=3pt, arrows=->, xbbl=15pt,

2 xbbr=15pt, levelsep=2.5cm]{\Tdia{root}}{%

3 $

4 \TR[edge={\ncbar[angle=180]}]{x}

5 \TR{y}

6 \TR[edge=\ncbar]{z}

7 $}

7 Edge and node labels 13

root
1 \psset{armB=1cm, levelsep=3cm, treesep=1cm,

2 angleB=-90, angleA=90, arrows=<-, nodesepA=3

pt}

3 \def\psedge#1#2{\ncangle{#2}{#1}}

4 \pstree[radius=2pt]{\Ttri{root}}{\TC* \TC* \TC

* \TC*}

7 Edge and node labels

Right after a node, an edge has typically been drawn, and you can attach labels using

\ncput, \tlput, etc. With \tlput, \trput, \taput, and \tbput, you can align the

labels vertically or horizontally, just like the nodes. This can look nice, at least if the

slopes of the node connections are not too different.

k r

j i

m

1 \pstree[radius=2pt]{\Tp}{%

2 \psset{tpos=.6}

3 \TC* \tlput{k}

4 \pstree{\Tc{3pt} \tlput[labelsep=3pt]{r}}{%

5 \TC* \tlput{j}

6 \TC* \trput{i}}

7 \TC* \trput{m}}

Within trees, the tpos parameter measures this distance from the predecessor to

the successor, whatever the orientation of the true. (Outside of trees it measures the

distance from the top to bottom or left to right nodes.)

PSTricks also sets shortput=tab within trees. This is a special shortput option

that should not be used outside of trees. It implements the following abbreviations,

which depend of the orientation of the true:

Short for:

Char. Vert. Horiz.

^ \tlput \taput

_ \trput \tbput

(The scheme is reversed if treeflip=true .)

above

left right

above

below

1 \psset{tpos=.6}

2 \pstree[treemode=R, thistreesep=1cm,

3 thislevelsep=3cm,radius=2pt]{\Tc{3pt}}{%

4 \pstree[treemode=U, xbbr=20pt]{\Tc{3pt}^{

above}}{%

5 \TC*^{left}

6 \TC*_{right}}

7 \TC*^{above}

8 \TC*_{below}}

7 Edge and node labels 14

You can change the character abbreviations with

\MakeShortTab{<char1>}{<char2>}

The \n*put commands can also give good results:

abo
ve

above

below

1 \psset{npos=.6,nrot=:U}

2 \pstree[treemode=R, thistreesep=1cm,

3 thislevelsep=3cm]{\Tc{3pt}}{%

4 \Tc{3pt}\naput{above}

5 \Tc*{2pt}\naput{above}

6 \Tc*{2pt}\nbput{below}}

You can put labels on the nodes using \nput. However, \pstree won’t take these

labels into account when calculating the bounding boxes.

There is a special node label option for trees that does keep track of the bounding

boxes:

~ * [Options] {stuff}

Call this a “tree node label”.

Put a tree node label right after the node to which it applies, before any node

connection labels (but node connection labels, including the short forms, can follow a

tree node label). The label is positioned directly below the node in vertical trees, and

similarly in other trees. For example:
root

h i j k

1 \pstree[radius=2pt]{\Tc{3pt}\nput{45}{\pssucc}{root}}{%

2 \TC*~{h} \TC*~{i} \TC*~{j} \TC*~{k}}

Note that there is no “long form” for this tree node label. However, you can change

the single character used to delimit the label with

\MakeShortTnput{<char1>}

If you find it confusing to use a single character, you can also use a command se-

quence. E.g.,

\MakeShortTnput{\tnput}

You can have multiple labels, but each successive label is positioned relative to the

bounding box that includes the previous labels. Thus, the order in which the labels are

placed makes a difference, and not all combinations will produce satisfactory results.

You will probably find that the tree node label works well for terminal nodes, with-

out your intervention. However, you can control the tree node labels be setting several

parameters.

8 Details 15

To position the label on any side of the node ("l"eft, "r"ight, "a"bove or "b"elow),

set: tnpos=l/r/a/b

root

h i

1 \psframebox{%

2 \pstree{\Tc{3pt}~[tnpos=a,tndepth=0pt,radius=4

pt]{root}}{%

3 \TC*~[tnpos=l]{h}

4 \TC*~[tnpos=r]{i}}}

When you leave the argument empty, which is the default, PSTricks chooses the

label position is automatically.

To change the distance between the node and the label, set tnsep to a dimension

When you leave the argument empty, which is the default, PSTricks uses the value of

labelsep. When the value is negative, the distance is measured from the center of

the node.

When labels are positioned below a node, the label is given a minimum height of

tnheight. Thus, if you add labels to several nodes that are horizontally aligned, and

if either these nodes have the same depth or tnsep is negative, and if the height of

each of the labels is no more than tnheight, then the labels will also be aligned by

their baselines. The default is \ht\strutbox, which in most TEX formats is the height

of a typical line of text in the current font. Note that the value of tnheight is not

evaluated until it is used.

The positioning is similar for labels that go below a node. The label is given a

minimum depth of tndepth. For labels positioned above or below, the horizontal

reference point of the label, i.e., the point in the label directly above or below the

center of the node, is set by the href parameter.

When labels are positioned on the left or right, the right or left edge of the label is

positioned distance tnsep from the node. The vertical point that is aligned with the

center of the node is set by tnyref. When you leave this empty, vref is used instead.

Recall that vref gives the vertical distance from the baseline. Otherwise, the tnyref

parameter works like the yref parameter, giving the fraction of the distance from the

bottom to the top of the label.

8 Details

PSTricks does a pretty good job of positioning the nodes and creating a box whose

size is close to the true bounding box of the tree. However, PSTricks does not take

into account the node connections or labels when calculating the bounding boxes,

except the tree node labels.

If, for this or other reasons, you want to fine tune the bounding box of the nodes,

you can set the following parameters to a dimension:

8 Details 16

name default

bbl 0pt

bbr 0pt

bbh 0pt

bbd 0pt

xbbl 0pt

xbbr 0pt

xbbh 0pt

xbbd 0pt
The "‘x"’ versions increase the bounding box by <dim>, and the others set the

bounding box to the dimension. There is one parameter for each direction from the

center of the node, left, right, height, and depth.

These parameters affect trees and nodes, and subtrees that switch directions, but

not subtrees that go in the same direction as their parent tree (such subtrees have a

profile rather than a bounding box, and should be adjusted by changing the bounding

boxes of the constituent nodes).

Save any fiddling with the bounding box until you are otherwise finished with the

tree.

You can see the bounding boxes by setting the showbbox=true/falseparameter

to true. To see the bounding boxes of all the nodes in a tree, you have to set this

parameter before the tree.

In the following example, the labels stick out of the bounding box:

foo

left

bar

right

1 \psset{tpos=.6,showbbox=true}

2 \pstree[treemode=U]{\Tc{5pt}}{%

3 \TR{foo}^{left}

4 \TR{bar}_{right}}

Here is how we fix it:

foo

left

bar

right

1 \psset{tpos=.6,showbbox=true}

2 \pstree[treemode=U,xbbl=8pt,xbbr=14pt]{\Tc{5pt

}}{%

3 \TR{foo}^{left}

4 \TR{bar}_{right}}

Now we can frame the tree:

foo

left

bar

right

1 \psframebox[fillstyle=solid,fillcolor=lightgray

,framesep=14pt,

2 linearc=14pt,cornersize=absolute,linewidth=1.5

pt]{%

3 \psset{tpos=.6,border=1pt,nodesepB=3pt}

4 \pstree[treemode=U,xbbl=8pt,xbbr=14pt]{%

5 \Tc[fillcolor=white,fillstyle=solid]{5pt}}{%

6 \TR*{foo}^{left}

7 \TR*{bar}_{right}}}

We would have gotten the same result by changing the bounding box of the two

terminal nodes.

To skip levels, use

8 Details 17

\skiplevel * [Options] {nodes or subtrees}

\skiplevels * [Options] {int}

<nodes or subtrees>

\endskiplevels

These are kind of like subtrees, but with no root node.

1 \pstree[treemode=R,levelsep=1.8,radius=2pt]{\Tc{3pt}}{%

2 \skiplevel{\Tfan}

3 \pstree{\Tc{3pt}}{%

4 \TC*
5 \skiplevels{2}

6 \pstree{\Tc{3pt}}{\TC* \TC*}

7 \TC*
8 \endskiplevels

9 \pstree{\Tc{3pt}}{\TC* \TC*}}}

The profile at the missing levels is the same as at the first non-missing level. You

can adjust this with the bounding box parameters. You get greatest control if you use

nested \skiplevel commands instead of \skiplevels.

9 The scope of parameter changes 18

Player 1

Player 2

Player 3

b (0,0,0)
N

L

b

(-10,10.-10)

l r

b

(3,8,-4)

c

b

(-8,3,4)

d

R

b

(10,-10.0)

l r

b

(4,8,-3)

c

b

(0,-5,0)

d

1 \large\psset{radius=6pt, dotsize=4pt}

2 \pstree[thislevelsep=0,edge=none,levelsep=2.5cm]{\Tn}{%

3 \pstree{\TR{Player 1}}{\pstree{\TR{Player 2}}{\TR{Player 3}}}

4 \psset{edge=\ncline}

5 \pstree{\pstree[treemode=R]{\TC}{\Tdot ~{(0,0,0)} ^{N}}}{%

6 \pstree{\TC[name=A] ^{L}}{%

7 \Tdot ~{(-10,10.-10)} ^{l}

8 \pstree{\TC[name=C] _{r}}{%

9 \Tdot ~{(3,8,-4)} ^{c}

10 \Tdot ~{(-8,3,4)} _{d}}}

11 \pstree{\TC[name=B] _{R}}{%

12 \Tdot ~{(10,-10.0)} ^{l}

13 \pstree{\TC[name=D]_{r}}{%

14 \Tdot ~{(4,8,-3)} ^{c}

15 \Tdot ~{(0,-5,0)} _{d}}}}}

16 \ncbox[linearc=.3,boxsize=.3,linestyle=dashed,nodesep=.4]{A}{B}

17 \ncarcbox[linearc=.3,boxsize=.3,linestyle=dashed,arcangle=25,nodesep=.4]{D}{C}

9 The scope of parameter changes

edge is the only parameter which, when set in a tree node’s parameter argument,

affects the drawing of the node connection (e.g., if you want to change the nodesep,

your edge has to include the parameter change, or you have to set it before the node).

As noted at the beginning of this section, parameter changes made with \pstree

affect all subtrees. However, there are variants of some of these parameters for

making local changes, i.e, changes that affects only the current level: thistreesep,

thistreenodesize, thistreefit=tight/loose, and thislevelsep.

For example:

9 The scope of parameter changes 19

1 \pstree[thislevelsep=.5cm,thistreesep=2cm,

2 radius=2pt]{\Tc*{3pt}}{%

3 \pstree{\TC*}{\TC* \TC*}

4 \pstree{\TC*}{\TC* \TC*}}

There are some things you may want set uniformly across a level in the tree,

such as the levelsep. At level <n>, the command \pstreehook<roman(n)> (e. g.,

\pstreehookii) is executed, if it is defined (the root node of the whole tree is level 0,

the successor tree objects and the node connections from the root node to these suc-

cessors is level 1, etc.). In the following example, the levelsep is changed for level

2, without having to set the thislevelsep parameter for each of the three subtrees

that make of level 2:

X1

X2

Y1

Y2

K1

K2

J1

J2

1 \[

2 \def\pstreehookiii{\psset{thislevelsep=3cm}}

3 \pstree[treemode=R,levelsep=1cm,radius=2pt]{\Tc{4pt}}{%

4 \pstree{\TC*}{%

5 \pstree{\TC*}{\Tr{X_1} \Tr{X_2}}

6 \pstree{\TC*}{\Tr{Y_1} \Tr{Y_2}}}

7 \pstree{\TC*}{%

8 \pstree{\TC*}{\Tr{K_1} \Tr{K_2}}

9 \pstree{\TC*}{\Tr{J_1} \Tr{J_2}}}}

10 \]

References 20

10 List of all optional arguments for pst-tree

The default value ist set when an optional argument is called without any value, e. g.

\pstree[levelsep] is the same as \pstree[levelsep=2cm]. All boolean arguments

are preset to false.

Key Type Default

treefit ordinary tight

thistreefit ordinary tight

treemode ordinary 0

treesep ordinary 0.75cm

thistreesep ordinary [none]

treenodesize ordinary -1pt

thistreenodesize ordinary -1pt

levelsep ordinary 2cm

thislevelsep ordinary [none]

treeflip boolean true

showbbox boolean true

edge ordinary \ncline

bbl ordinary [none]

bbr ordinary [none]

bbh ordinary [none]

bbd ordinary [none]

xbbl ordinary [none]

xbbr ordinary [none]

xbbh ordinary [none]

xbbd ordinary [none]

fansize ordinary 1cm

tnsep ordinary

tnyref ordinary

tnheight ordinary \ht \strutbox

tndepth ordinary \dp \strutbox

tnpos ordinary

References

[1] Denis Girou. Présentation de PSTricks. Cahier GUTenberg, 16:21–70, April 1994.

[2] Michel Goosens, Frank Mittelbach, Sebastian Rahtz, Dennis Roegel, and Herbert

Voß. The LATEX Graphics Companion. Addison-Wesley Publishing Company,

Boston, Mass., second edition, 2007.

[3] Nikolai G. Kollock. PostScript richtig eingesetzt: vom Konzept zum praktischen

Einsatz. IWT, Vaterstetten, 1989.

[4] Herbert Voß. PSTricks – Grafik für TEX und LATEX. DANTE – Lehmanns,

Heidelberg/Hamburg, fifth edition, 2008.

References 21

[5] Timothy Van Zandt. multido.tex - a loop macro, that supports fixed-point

addition. CTAN:/macros/generic/multido.tex, 1997.

[6] Timothy Van Zandt and Denis Girou. Inside PSTricks. TUGboat, 15:239–246,

September 1994.

CTAN:/macros/generic/multido.tex

Index

Symbols

~, 14

A

a, 15

armA, 11

.aux, 10

B

b, 15

bbd, 16

bbh, 16

bbl, 16

bbr, 16

D

D, 7

\def, 11

dvips, 3

E

edge, 11, 12, 18

\endpsTree, 4

\endskiplevels, 17

Environment

– psTree, 4

Extension

– .aux, 10

F

fansize, 6

H

href, 15

J

\jobname, 10

K

Keyvalue

– a, 15

– b, 15

– D, 7

– L, 7

– l, 15

– loose, 8, 18

– R, 7

– r, 15

– tight, 8, 18

– U, 7

Keyword

– armA, 11

– bbd, 16

– bbh, 16

– bbl, 16

– bbr, 16

– edge, 11, 12, 18

– fansize, 6

– href, 15

– labelsep, 15

– levelsep, 10, 19

– name, 12

– nodesep, 18

– nodesepA, 6

– offsetA, 6

– ref, 5

– shortput, 13

– showbbox, 16

– thislevelsep, 18, 19

– thistreefit, 18

– thistreenodesize, 18

– thistreesep, 18

– tndepth, 15

– tnheight, 15

– tnpos, 15

– tnsep, 15

– tnyref, 15

– tpos, 13

– treefit, 8, 9

– treeflip, 8, 13

– treemode, 7, 8

– treemode=, 7

– treenodesize, 9

– treesep, 8

– vref, 15

– xbbd, 16

– xbbh, 16

– xbbl, 16

– xbbr, 16

– yref, 15

22

Index 23

L

L, 7

l, 15

labelsep, 15

levelsep, 10, 19

loose, 8, 9, 18

M

Macro

– \def, 11

– \endpsTree, 4

– \endskiplevels, 17

– \jobname, 10

– \MakeShortTab, 14

– \MakeShortTnput, 14

– \ncdiag, 11

– \ncdiagg, 11

– \ncline, 11

– \ncput, 13

– \nput, 14

– \psedge, 11

– \psovalnode, 4

– \pspred, 10

– \pssucc, 10

– \psTree, 4

– \pstree, 4, 8, 14, 18, 20

– \pstreehookii, 19

– \renewcommand, 11

– \Rnode, 5

– \rnode, 5

– \rput, 3

– \skiplevel*, 17

– \skiplevel, 17

– \skiplevels*, 17

– \skiplevels, 17

– \strutbox, 15

– \taput, 13

– \tbput, 13

– \TC*, 5

– \Tc*, 5

– \TCircle*, 5

– \Tcircle*, 5

– \Tdia*, 5

– \Tdot*, 5

– \Tf*, 5

– \Tfan*, 6

– \tlput, 13

– \Tn, 5

– \Toval*, 5

– \Toval, 4

– \Tp*, 5

– \TR*, 5

– \TR, 5

– \Tr*, 5

– \Tr, 5

– \trput, 13

– \tspace, 9

– \Ttri*, 5

\MakeShortTab, 14

\MakeShortTnput, 14

N

name, 12

\ncdiag, 11

\ncdiagg, 11

\ncline, 11

\ncput, 13

nodesep, 18

nodesepA, 6

none, 12

\nput, 14

O

offsetA, 6

P

Program

– dvips, 3

\psedge, 11

\psovalnode, 4

\pspred, 10

\pssucc, 10

\psTree, 4

psTree, 4

\pstree, 4, 8, 14, 18, 20

\pstreehookii, 19

R

R, 7

r, 15

ref, 5

\renewcommand, 11

\Rnode, 5

\rnode, 5

Rokicki, 3

Index 24

\rput, 3

S

shortput, 13

showbbox, 16

\skiplevel, 17

\skiplevel*, 17

\skiplevels, 17

\skiplevels*, 17

\strutbox, 15

subtree, 4, 8

Syntax

– ~, 14

T

tab, 13

\taput, 13

\tbput, 13

\TC*, 5

\Tc*, 5

\TCircle*, 5

\Tcircle*, 5

\Tdia*, 5

\Tdot*, 5

\Tf*, 5

\Tfan*, 6

thislevelsep, 18, 19

thistreefit, 18

thistreenodesize, 18

thistreesep, 18

tight, 8, 18

\tlput, 13

\Tn, 5

tndepth, 15

tnheight, 15

tnpos, 15

tnsep, 15

tnyref, 15

\Toval, 4

\Toval*, 5

\Tp*, 5

tpos, 13

\TR, 5

\Tr, 5

\TR*, 5

\Tr*, 5

tree objects, 4

treefit, 8, 9

treeflip, 8, 13

treemode, 7, 8

treemode=, 7

treenodesize, 9

treesep, 8

\trput, 13

true, 13

\tspace, 9

\Ttri*, 5

U

U, 7

V

Value

– loose, 8, 9

– none, 12

– tab, 13

– tight, 8

– true, 13

vref, 15

X

xbbd, 16

xbbh, 16

xbbl, 16

xbbr, 16

Y

yref, 15

	Overview
	Tree Nodes
	Tree orientation
	The distance between successors
	Spacing between the root and successors
	Edges
	Edge and node labels
	Details
	The scope of parameter changes
	List of all optional arguments for pst-tree
	References

