newvbtm and varvbtm
Packages for Variants of verbatim Environment*

Hiroshi Nakashima
(Toyohashi Univ. of Tech.)

1999/08/11

Abstract

This file provides two style files; newvbtm to define verbatim-like environments;
varvbtm to provide set of macros for variants of verbatim, e.g. in which "I acts as a
tab.

Contents

1 Introduction

N

2 Usage
2.1 Loading Style Files
2.2 newvbtm: Define verbatim-like Environments
2.3 varvbtm: To Make Variants of verbatim
2.3.1 Tab Emulation,
2.3.2 Form Feed Character.
2.3.3 Non-Verbatim Stuff in verbatim-like Environment
2.3.4 Verbatim Input

U O = s WD N

3 Implementation
3.1 Tricks for Compatibility L
3.2 newvbtm
3.3 varvbtm ...
3.3.1 Tab Emulation, 8
3.3.2 Form Feed Character. 10
3.3.3 Non-Verbatim. 11
3.3.4 Verbatim Input 13

ow SO

*This file has version number v1.0, last revised 1999/08/11.

newvbtm
varvbtm

1 Introduction

IXTEX users often have trouble when they wish to have their own customized verbatim-like
environment. Probably you once wished to have an indented-footnotesize-verbatim instead
of always typing;

\begin{itemize}\item[]\footnotesize
\begin{verbatim}

\end{verbatim}
\end{itemize}

and tried the following just to know it does not work.

\newenvironment{myverbatim}{\begin{itemize}\item[]\footnotesize
\begin{verbatim}}¥
{\end{verbatim}\end{itemize}}

Another trouble you probablly have had is that what you see in verbatim text with <TAB>
is not what you get because <TAB> does not acts as an tab but a space.

Of course it is possible to define your own verbatim-like environments if you have
enough knowledge of the implementation of verbatim including dirty tricks with \catcode.
However, even a TEXpert should be bored with typing a dirty code like;

\begingroup \catcode‘\|=0 \catcode‘\[=1 \catcode‘\]=2
\catcode‘\{=12 \catcode‘\}=12 \catcode ‘\\=12

|long|def | @myxverbatim##1\end{myverbatim} [##1|end [myverbatim]]
| endgroup

The style files distributed with this document will solve these problems. You will have
two style files, newvbtm.sty and varvbtm.sty, by processing newvbtm.dtx with docstrip, or
simply doing the following.

% tex newvbtm.ins

The former style provides you \(re)newverbatim command to (re)define your own
verbatim-like environment easily. The latter gives you a set of various macros for tab-
emulation, page break control, etc.

2 Usage

2.1 Loading Style Files

Both style files are usable to both INTEX 2¢ and K TEX-2.09 users with their standard package
loading declaration. If you use IMTEX 2¢ and wish to load, for example, newvbtm, simply
do the following.

\usepackage{newvbtm}
If you still love KTEX-2.09, the following is what you have to do.
\documentstylel..,newvbtm, ...]l{{main-style)}

Note that loading varvbtm automatically loads newvbtm too. Thus you may not load both
though doing so is safe.

\newverbatim

\renewverbatim

2.2 newvbtm: Define verbatim-like Environments

The command,;

\newverbatim{(env)} [(n-args)]{(beg-def-outer)}{(beg-def-inner)}%
{{end-def-inner)}{{end-def-outer)}

defines an environment named (env) with (n-args) arguments (optionally), and acting con-
ceptually as follows:

(beg-def-outer)\begin{verbatim}(beg-def-inner)
(body-of-environment)
(end-def-inner)\end{verbatim}(end-def-outer)

Thus to have indented-footnotesize-verbatim named, say indfnsverbatim, you may simply
do the following.

\newverbatim{indfnsverbatim}{\begin{itemize}\item[]\footnotesize}{}{}%
{\end{itemize}}

Since \newverbatim defines not only (env) but also its starred counterpart (env)* that
acts like verbatim*, the definition above also defines indfnsverbatim#* environment.

If you use BTEX 2¢, you may make (env) have an optional argument whose default value
is (default) by;

\newverbatim{{env)} [(n-args)] [{default)]{({beg-def-outer)}{(beg-def-inner)}’,
{({end-def-inner)}{(end-def-outer)}

For example, our indfnsverbatim environment can have an optional argument to specify
a font size other than \footnotesize by the following definition.

\newverbatim{indfnsverbatim}[1] [\footnotesizel’
{\begin{itemize}\item [J#1}{}{}{\end{itemize}}

The argument (beg-def-inner) is for TgXperts who wish to do something overriding
what I¥TEX’s \verbatim does. Even if you don’t have much confidence in your TEXpertise,
however, you can do some useful thing with this argument. For example, the following is
obtained by itself.

\newverbatim{slverbatim}{}{\slshape}{}{}

Also you will find a few commands for this argument in §2.3.
The needs of (end-def-inner) is much more limited. One example is to check if
\end{verbatim} is at the beginning of a line. This examination is done by;

\newverbatim{myverbatim}{...}{...}%
{\ifvmode (at-bol) \else (not-at-bol) \fi}{...}

You may redefine your own verbatim-like environment, or even verbatim itself, by
\renewverbatim whose arguments are same as those of \newenvironment.

\newtabverbatim
\renewtabverbatim

VVBtabwidth

\VVBbegintab
\VVBendtab

\VVBprintFF
\VVBprintFFas

\VVBbreakatFF
\VVBbreakatFFonly

2.3 varvbtm: To Make Variants of verbatim
2.3.1 Tab Emulation

The commands \(re)newtabverbatim is to (re)define a verbatim-like environment
in which <TAB> acts as a tab. The syntax of the command is same as that of
\ (re)newverbatim, and its operation is equivalent to;

\ (re)newverbatim{(env)} [(n-args)] [{default)]
{(beg-def-outer)}%
{(beg-def-inner) (beg-def-for-tab) 3%
{{end-def-for-tab){end-def-inner)},
{({end-def-outer)}

For example;
\newtabverbatim{tabverbatim}{}{}{}{}

defines tabverbatim environment just to make <TAB> act as a tab. Another example to have
tab emulation version of indfnsverbatim with optional argument, say indfnstabverbatim
is;

\newtabverbatim{indfnstabverbatim}[1] [\footnotesizel
{\begin{itemize}\item [J#1}{}{}{\end{itemize}}

Note that in the starred version, e.g. tabverbatim*, a <TAB> is translated into a sequence
of .

The distance between tab stops is the width of eight characters of the font used in the
environment, i.e. typewriter font usually. If you want to change this default value, set the
counter VVBtabwidth to the number of characters of the distance.

The magical stuff for (beg-def-for-tab) and (end-def-for-tab) is also accessible through
commands \VVBbegintab and \VVBendtab for TpXperts who wish to do something with
\(re)newverbatim rather than \ (re)newtabverbatim.

2.3.2 Form Feed Character

You might have found that <FF> (or "L) in verbatim caused a mysterious error;
! Forbidden control sequence found while scanning use of \@xverbatim.

This is because <FF> is not verbatimized. Giving the command \VVBprintFF to (beg-def-
outer) (or {beg-def-inner)) of \newverbatim does it for you and makes <FF> printed as "L
in default. You may change this default print image by;

\VVBprintFFas{(str)}

where (str) is a sequence of any printable characters other than { and }. Note that this
command is very fragile as \verb and \index, and thus should not be used in an argument
of other commands including \ (re)newverbatim.

The other way to make <FF> acceptable is to give it a useful and natural job, i.e. page
breaking. This is done by giving \VVBbreakatFF to (beg-def-inner) (not outer). Its more
powerful relative, \VVBbreakatFFonly, is also available to allow page breaking at <FF>
only. Unfortunately, these two commands are incompatible with \ (re)newtabverbatim
and thus you have to use \ (re)newverbatim with \VVBbegintab followed by them.

\VVBnonverb

\VVBnonverbmath

2.3.3 Non-Verbatim Stuff in verbatim-like Environment

You might have once wished to insert a few non-verbatim stuff, for example math stuff.
The command, to be given to (beg-def-outer);

\VVBnonverb{\(char)}

makes it possible. For example, the author just did the following to produce the result
shown above.

\newverbatim{verbatimwithnv}{\VVBnonverb{\!}}{}{}{}
\begin{verbatimwithnv}
\VVBnonverb{\!$\langle\mbox{\textit{char}}\rangle$!'}
\end{verbatimwithnv}

As shown in the example above, the non-verbatim staff is surrounded by a pair of (char),
the letter ‘!’ in this case. Note that (char) has to be preceded by ‘\’ when it is given as
the argument of \VVBnonbverb, and (char) should not be ‘\’. Also note that the default
font for the non-verbatim part is not that for verbatim part, but the font used outside the
environment!.

As mentioned above, math stuffs will be most desirable to be non-verbatim. Thus the
macro;

\VVBnonverbmath [\(char)]

gives you a shorthand to typeset the stuff surrounded by a pair of (char) in math mode.
Since the default of (char) is $ as expected, the example above may be;

\newverbatim{verbatimwithnv}{\VVBnonverbmath}{}{}{}
\begin{verbatimwithnv}
\VVBnonverb{\$\langle\mbox{\textit{char}}\rangle$}
\end{verbatimwithnv}

2.3.4 Verbatim Input

The last thing varvbtm gives you is;

\ (re)newverbatiminput{{command)} [{n-args)] [{default)]%
{(beg-def-outer)}{ {beg-def-inner)}%
{{end-def-inner)}{{end-def-outer)}
to define a (command) to \input a file. Since this define a (command) instead of an environ-
ment, (command) should have ‘\” as its prefix. The (command) has at least one mandatory
argument, (file) to be input, which can be referred as first argument if [{default)] is not
supplied, or as second otherwise. Note that, however, if the (command) does not have any
other arguments, you can omit [{n-arg)].
For example;

\newverbatiminput{\vinput }H{}{}{}{}

defines \vinput{(file)} (and \vinput*) that \input a (file) as if the (file) has \begin/
\end{verbatim} at its first and last lines. A little bit more complicated example;

\newverbatiminput{\indfnsvinput}[2] [\footnotesizel¥
{\begin{itemize\item [1#1}{}{}{\end{itemize}}

defines a indented-footnotesize-by-default version of \vinput.

IStrictly speaking, the font used when \VVBnonverb is invoked. Thus if \VVBnonverb is preceded by a
font changing command, the fond chosen by the command will be used.

\ifnvb@LaTeXe

\newverbatim
\renewverbatim
\nvb@newenv
\nvb@Xnewverbatim

\nvb@newverbatim
\nvb@inewverbatim

3 Implementation

3.1 Tricks for Compatibility

At the very beginning of each style file, we check whether it is loaded by IATEX2¢ or
TEX-2.09, declare the flag \ifnvb@LaTeXe and set it to true or false, and then declare
\NeedsTeXFormat and \ProvidesPackage if IXTgX 2. This part is embedded at the be-
ginning of newvbtm.dtx in a tricky manner to let docstrip produce the following code, for
example for newvbtm.

\newif\ifnvb@LaTeXe
\def\next{LaTeX2e}
\ifx\fmtname\next \nvb@LaTeXetrue
\def\next{
\NeedsTeXFormat{LaTeX2e}[1994/12/01]
\ProvidesPackage{newvbtm}}

\else \nvb@LaTeXefalse

\def\next [#1]{}\fi

\next

[1999/08/11 v1.0]

In varvbtm, loading newvbtm also takes care of the compatibility. That is, newvbtm is
loaded by \RequirePackage if IXTEX 2¢, while simply by \input otherwise. Since newvbtm
does not modifies any existential macros nor declares anything by \new except for \newif?,
it is safe even if \newvbtm is loaded multiple times in BTEX-2.09.

1

2 \ifnvb@LaTeXe

3 \RequirePackage{newvbtm}
4 \else

5 \input{newvbtm.sty}

6 \fi

3.2 newvbtm

The macros \newverbatim and \renewverbatim call a macro \nvb@newverbatim af-
ter \nvb@newenv and \nvb@Xnewverbatim are made \let-equal to appropriate macros.
That is, \nvb@newenv is either \newenvironment or \renewenvironment, and \nvb@
Xnewverbatim is, in both cases, \nvb@xnewverbatim that is the body of our environment
definition as explained later. Note that \nvb@Xnewverbatim will be set differently in the
macros defined in varvbtm.

The common macro \nvb@newverbatim checks the existence of [(n-args)] and then
calls \nvb@inewverbatim to check that of [{default)]. Note that since KIEX-2.09’s
\(re)newenvironment does not have [(default)], these macros have definitions slightly
different from those for HTEX 2¢ to pass an empty argument to \nvb@Xnewverbatim al-
ways.

7

8 \def\newverbatim{\let\nvb@newenv\newenvironment

9 \let\nvb@Xnewverbatim\nvb@xnewverbatim \nvb@newverbatim}
10 \def\renewverbatim{\let\nvbOnewenv\renewenvironment

2Multiple \newif for a flag is safe, and thus we do it for \nvb@LaTeXe both in newvbtm and varvbtm.

\nvb@xnewverbatim
\nvb@currenvir
\nvb@defxverbatim
\nvb@xverbatim
\nvb@beginhook
\nvb@endinhook
\nvb@endouthook

11 \let\nvb@Xnewverbatim\nvb@xnewverbatim \nvb@newverbatim}
12

13 \ifnvb@LaTeXe

14 \def\nvb@newverbatim#1{\@ifnextchar [%]

15 {\nvb@inewverbatim{#1}}{\nvb@inewverbatim{#1}[0]}}

16 \def\nvb@inewverbatim#1 [#2]{\@ifnextchar [}]

17 {\nvb@Xnewverbatim{#1} [#2] }{\nvb@Xnewverbatim{#1} [#2] []1}}
18 \else

19 \def\nvb@newverbatim#1{\@ifnextchar [%]

20 {\nvb@inewverbatim{#1}}{\nvb@Xnewverbatim{#1} [0] [1}}

21 \def\nvb@inewverbatim#1 [#2] {\nvb@Xnewverbatim{#1} [#2] [1}

22 \fi

23

The macro \nvb@xnewverbatim performs the essential part of the function to define a
verbatim-like environment. First it checks if (default) is empty so that this optional ar-
gument is not passed to \(re)newenviromment, especially of IXTEX-2.09. Then it calls
\(re)newenvironment to define (env) which performs the following in (beg-def) part.

bl. \def-ine \nvb@currenvir to let it have (env) as its body, so that the name of envi-
ronment can be referred by the macros in varvbtm.

b2. Execute (beg-def-outer).

b3. Open a group to localize assignments in M TEX’s \@verbatim, especially those of flags
referred in \1list-related macros.

b4. Perform what IATEX’s \verbatim does, i.e. \@verbatim etc., except for \@xverbatim.
In starred-version, only \@verbatim is called in this step.

b5. Call \nvb@defxverbatim to define \nvb@xverbatim that performs what IXTEX’s
\@xverbatim does but its argument terminator is “\end{(env)}”’. The definition of
\nvb@defxverbatim is done in a group in which ‘\’, ‘{’ and ‘}’ have “other” \catcode
with the well-known technique using ‘1’, ‘[’ and ‘]’.

b6. Call \nvb@beginhook, which is usually \relax but will not be if \VVBnonverb is
executed in (beg-def-outer) as described in §3.3.3.

b7. Execute (beg-def-inner).
b8. Call \nvb@xverbatim to typeset the body of environment verbatim.
The (end-def) part for (env) performs the following.
el. Execute (end-def-inner).
e2. Call \nvb@endinhook, which is \relax now but could do something if necessary.
e3. Call \endverbatim to close the \trivlist opened by \@verbatim.
e4. Close the group opened by (beg-def).
e5. Execute (end-def-outer).
e6. Call \nvb@endouthook, which is also \relax now but might not be.

e7. Turn \if@endpe true to tell \end that (env) is list-like.

\c@VVBtabwidth

\vvb@tabwidth

\vvbQeverypar

\vvb@tabbox

\VVBbegintab
\vvb@tabfil
\vvb@tabdef

24 \long\def\nvb@xnewverbatim#1 [#2] [#3] #4#5#6#7{\def\Qtempa{#31}/,

25 \ifx\@tempa\@empty \def\@tempa{[#2]1}%

26 \else \def\@tempa{ [#2] [#3]}\fi

27 \def\@tempb{\nvbenewenv{#1}1}/,

28 \expandafter\@tempb\@tempa

29 {\def\nvb@currenvir{#1}/,

30 #4\begingroup \@verbatim \frenchspacing \@vobeyspaces
31 \nvb@defxverbatim{#1}\nvb@beginhook #5\nvb@xverbatim}%
32 {#6\nvb@endinhook \endverbatim \endgroup

33 #7\nvb@endouthook \Qendpetruel}

34 \def\@tempb{\nvbenewenv{#1%}}%

35 \expandafter\@tempb\Q@tempa

36 {\def\nvb@currenvir{#1*}}

37 #4\begingroup \@verbatim

38 \nvb@defxverbatim{#1*}\nvb@beginhook #5\nvbO@xverbatim}y,
39 {\@nameuse{end#1}}}

40 \let\nvb@beginhook\relax

41 \let\nvb@endinhook\relax

42 \let\nvb@endouthook\relax

43

44 \begingroup \catcode‘\[\z@ \catcode‘\[\@ne \catcode‘\]\tw@

45 \@makeother\{ \@makeother\} \@makeother\\

46 | gdef Invb@defxverbatim#1[|long|def Invb@xverbatim##1\end{#1} [##1|end[#1]1]]
47 |endgroup

3.3 varvbtm
3.3.1 Tab Emulation

For tab emulation, we declare the following registers.

e The count register \c@VVBtabwidth that has the number of characters between tab
stops. The default value 8 is set.

e The dimen register \vvb@tabwidth that has the distance between tab stops.

e The toks register \vvb@everypar to save the contents of \everypar, though it is
usually ineffective.

e The box register \vvb@tabbox that contains stuffs between the beginning of line or a
tab stop and the end of line or another tab stop.

48

49 %% Tab Emulation

50

51 \newcounter{VVBtabwidth}\c@VVBtabwidth8
52 \newdimen\vvb@tabwidth

53 \newtoks\vvb@everypar

54 \newbox\vvb@tabbox

55

The macro \VVBbegintab, which should be called from (beg-def-inner) part, performs a
few preprocessing for tabbing some of which override the definition in \@verbatim.

A line in a tabbing verbatim environment is enclosed in a box \vvb@tabbox so that we
can know the horizontal position of a tab. Thus, we let \everypar call \vvb@tabbol to

\VVBendtab

\vvb@tabbol
\vvb@tabeol

\vvb@tab

\newtabverbatim
\renewtabverbatim
\vvb@xnewtabverbatim

open the box, and \par be \vvb@tabeol to close. Note that \obeylines after the \let
for \par is necessary to make ‘"M’ \let-equal to our own \par.

Then we set \vvb@tabwidth to \c@VVBtabwidth x (width-of-4). We also \def-ine \vvb@
tabfil to produce a sequence of ‘’ in the case of starred environment, i.e. the \catcode
of space is not \active.

Finally, we make "I active and \let-equal to \vvb@tab by \vvb@tabdef.

The macro \VVBendtab, which should be called from (end-def-inner) part, closes the box
\vvb@tabbox if necessary, i.e. \end{(env)} is not at the beginning of a line and thus not
in vertical mode.

56 \def\VVBbegintab{\vvb@everypar\everypar

57 \everypar{\vvb@tabbol \the\vvb@everyparl}y,

58 \let\par\vvb@tabeol \obeylines

59 \settowidth\vvb@tabwidth{A}\multiply\vvb@tabwidth\c@VVBtabwidth

60 \ifnum\catcode‘\ =\active \let\vvb@tabfillrelax

61 \else \def\vvb@tabfil{\leaders\hbox{\char‘\ }}\fi
62 \catcode‘\""I\active \vvb@tabdef}

63 {\catcode‘\""I\active \gdef\vvb@tabdef{\let~"I\vvb@tab}}
64 \def\VVBendtab{\ifvmode\else \par \fi}
65

The macro \vvb@tabbol opens the box \vvb@tabbox, while \vvb@tabeol closes it after
\leavevmode to ensure the box is opened and puts the contents of the box as the last (and
maybe only one) element of a paragraph terminated by \@@par. The flag \if@tempswa,
which \@verbatim initiated to false, is examined in order to prevent "M just following
\begin{(env)} from making an empty line. Since the flag is turned true by both \vvb@
tabbol and \vvb@tabeol, a "M is in effect in other cases.

66 \def\vvb@tabbol{\Q@tempswatrue \setbox\vvb@tabbox\hbox\bgroup}
67 \def\vvb@tabeol{\if@tempswa

68 \leavevmode \egroup \box\vvb@tabbox \@@par \penalty\interlinepenalty
69 \fi \@tempswatrue}
70

The macro \vvb@tab, to which "I is made \1let-equal, is the heart of tabbing. It first closes
\vvb@tabbox after \leavevmode to ensure its opening. Then it moves to the next tab stop
by putting a box of (|w/t] + 1) x t wide, where w is the width of \vvb@tabbox and ¢ is
\vvb@tabwidth. In the box, the contents of \vvb@tabbox is flushed left by \vvb@tabfil
\hfil, which makes invisible space in non-starred environment because \vvb@tabfil is
relax, while produces a sequence of ‘.’ by \leaders in starred environment. After the box
is put, it opens \vvb@tabbox again by \vvb@tabbol.

71 \def\vvb@tab{\leavevmode \egroup

72 \@tempdima\wd\vvb@tabbox \divide\@tempdima\vvb@tabwidth

73 \multiply\@tempdima\vvb@tabwidth \advance\@tempdima\vvb@tabwidth

74 \hbox to\@tempdima{\unhbox\vvb@tabbox \vvb@tabfil\hfil}\vvb@tabbol}
75

Finally, we define \newtabverbatim and \renewtabverbatim for tabbing verbatim environ-
ment definition. They call the common macro \nvb@newverbatim described in §3.2 to check
the existence of optional arguments as \ (re)newverbatim does, but \nvb@Xnewverbatim is
made \let-equal to \vvb@xnewtabverbatim that simply calls \nvb@xnewverbatim attach-
ing \VVBbegintab and \VVBendtab to (beg-def-inner) and (end-def-inner) respectively.

\VVBprintFF
\vvb@printFF
\VVBprintFFas
\vvb@printFFas

\VVBbreakatFF
\vvb@FFpar
\vvb@breakFF
\vvb@parafterFF

\VVBbreakatFFonly
\vvb@FF@par
\vvb@FFpenalty
\vvb@parnobreak

76 \def\newtabverbatim{\let\nvb@newenv\newenvironment

7 \let\nvb@Xnewverbatim\vvb@xnewtabverbatim \nvb@newverbatim}

78 \def\renewtabverbatim{\let\nvb@newenv\renewenvironment

79 \let\nvb@Xnewverbatim\vvb@xnewtabverbatim \nvb@newverbatim}

80 \def\vvb@xnewtabverbatim#1 [#2] [#3] #4#5#6{),

81 \nvb@xnewverbatim{#1} [#2] [#3]{#4}{#5\VVBbegintab}{\VVBendtab#6}}
82

83 %L

3.3.2 Form Feed Character

The macro \VVBprintFF simply makes "L \let-equal to \vvb@printFF whose body is print
image of "L and is defined by \VVBprintFFas. Since the body of \VVBprintFF has "L that
usually cannot appear in the body of a macro because of its \active-ness and outerness,
its \def-inition is enclosed in a group in which "L is made \relax together with that of
\VVBbreakatFF.

The macro \VVBprintFFas, cooperating with \VVB@printFFas, defines its argument
(str) verbatim as the body of \vvb@printFF by a well-known trick with grouping and
\@sanitize used in, for example, \index. The default print image “~L” is also defined by
\VVBprintFFas.

The macro \VVBbreakatFF makes "L \let-equal to \vvb@breakFF and saves the definition
of \par in \vvb@FFpar because it will be modified by \vvb@breakFF. The macro \vvb@
breakFF breaks the current page and then makes \par, and "M by \obeylines, \let-equal
to \vvb@parafterFF. Since \vvb@parafterFF will do \par saved in \vvb@FFpar only when
horizontal mode, “M just following ~L will not produce an empty line at the beginning of
the new page. After the first "M in the page, \par and "M regain their original definitions.

The macro \VVBbreakatFFonly does what \VVBbreakatFF by calling it but before that
it makes \par \let-equal to \vvb@parnobreak saving its definition in \vvb@FF@par. The
macro \vvb@parnobreak temporarily makes \penalty \let-equal to \@tempcnta in order
that \penalty(num) in original \par saved in \vvb@FF@par do nothing. Then it restores
\penalty from \vvb@FFpenalty and inserts \nobreak to inhibit page break at “M. The
temporary modification of \penalty is done \global-ly because of the compatibility with
the tabbing verbatim.

84

85 %% Form Feed Character

86

87 \begingroup \let~"L\relax

88 \gdef\VVBprintFF{\let~"L\vvb@printFF}

89 \gdef\VVBbreakatFF{\let""L\vvb@breakFF \let\vvb@FFpar\par}

90 \endgroup

91

92 \def\VVBprintFFas{\begingroup \@sanitize \vvb@printFFas}

93 \def\vvb@printFFas#1{\endgroup \def\vvb@printFF{#1}}

94 \VVBprintFFas{ L}

95

96 \def\vvb@breakFF{\par \vfil \break \let\par\vvb@parafterFF \obeylines}
97 \def\vvb@parafterFF{\ifhmode \vvb@FFpar \fi \let\par\vvb@FFpar \obeylines}
98

99 \gdef\VVBbreakatFFonly{\let\vvb@FF@par\par

100 \let\par\vvb@parnobreak \obeylines \VVBbreakatFF}

10

\VVBnonverb
\vvb@nvfont
\vvb@currsize
\vvb@beginhook

\VVBnonverbmath
\vvb@nonverbmath
\vvb@@bnonverb
\vvb@@enonverb

\vvb@nonverb
\vvb@bnonverb
\vvb@enonverb

\vvb@@bnonverb
\vvb@@enonverb

\do
\vvb@regaincat

101 \let\vvb@FFpenalty\penalty

102 \def\vvb@parnobreak{\global\let\penalty\@tempcnta \vvb@FF@par
103 \global\let\penalty\vvb@FFpenalty \nobreak}

104

105 %4°L

3.3.3 Non-Verbatim

The macro \VVBnonverb saves the current font in \vvb@uvfont. If IATEX 2¢, its body will
be a sequence of \fontencoding(curr-encoding) and its relatives followed by \selectfont.
Otherwise, its body will be the current font size command saved in \vvb@currsize followed
by the current font produced by \the\font. Then \VVBnonverb defines \nvb@beginhook so
as to call \vvb@nonverb with the argument \(char) just before (beg-def-inner) is executed.

The macro \VVBnonverbmath examines the existence of its optional argument \(char) and
calls \VVBnonverb via \vvb@nonverbmath with it or with \$ if omitted. Prior to the call,
it makes both \vvb@@bnonverb and \vvb@@enonverb \let-equal to ‘$’ so that the non-
verbatim part is surrounded by them.

106

107 %% Non-Verbatim

108

109 \def\VVBnonverb#1{\ifnvb@LaTeXe

110 \edef\vvb@nvfont{\noexpand\fontencoding{\f@encoding}y,
111 \noexpand\fontfamily{\f@family}J,

112 \noexpand\fontseries{\f@series}/,

113 \noexpand\fontshape{\f@shapel}/

114 \noexpand\fontsize{\f@size}{\noexpand\f@baselineskip}¥%
115 \noexpand\selectfont}/,

116 \else

117 \let\vvb@currsize\@currsize

118 \edef\vvb@nvfont{\noexpand\vvb@currsize \the\font}\fi
119 \def\nvb@beginhook{\vvb@nonverb#1}}

120 \def\VVBnonverbmath{\@ifnextchar [%]

121 {\vvb@nonverbmath}{\vvb@nonverbmath [\$]}}

122 \def\vvb@nonverbmath [#1]{\let\vvb@@bnonverb$\let\vvb@@enonverb$\VVBnonverb#1}
123

The macro \vvb@nonverb defines the \active (char) to open a \hbox after \leavevmode
and then to call \vvb@bnonverb to do the following. First it selects the font saved in \vvb@
nvfont and then restores \catcode of special characters by \vvb@regaincat. Since the
body of \vvb@regaincat is the expansion result of \dospecials with the defintion of \do
as;

\def\do#1{\catcode ‘\noexpand#1\number\catcode ‘#1\relax}

it should be the sequence of “\catcode ‘\,10” and so on. The macro \vvb@bnoverb also set
\catcode of characters in \verbatim@nolig@list if exists or ‘‘’ otherwise to 12 (other).
Then the \catcode of (char) is made \active because it might not be by the preceding
\catcode modification. Finaly it calls \vvb@enonverb to get non-verbatim stuff.

The macro \vvb@enonverb, which is also defined in \vvb@uonverb, gets everything
before (char), puts it in the \hbox surrounding it by \vvb@@bnonverb and \vvb@@enonverb,
which are both ‘$’ in the case of \VVBnonverbmath but \relax otherwise, and then closes
the \hbox.

11

\vvbQ@escdef
\vvb@enddef
\vvb@endenvir

\vvb@esc
\vvb@checkend

Since the definitions of the (char) and \vvb@enonverb should have \active (char), we
use the trick with \lowercase in which the \lccode of ‘~’ is the code of {char).

After the definitions, the character ‘\’ is made \active and \let-equal to \vvb@esc by
\vvb@escdef so that we can find “end{(env)}”, stored in \vvb@endenvir by \vvb@enddef,
following ‘\’. Note that we cannot use the conventional scheme to get everything in the
body of (env) by \nvb@xverbatim because the \catcode of special characters are modified
in non-verbatim part. Thus we make ‘\’ active and \vvb@xverbatim \relax.

124 \def\vvb@nonverb#1{\catcode ‘#1\active \begingroup \lccode‘\~‘#1\relax

125 \lowercase{\endgroup

126 \def~{\leavevmode \hbox\bgroup \vvb@bnonverb#11}%

127 \def\vvb@enonverb##1~{\vvb@@bnonverb

128 ##1\vvb@@enonverb \egroupl}}/,

129 \catcode‘\\\active \vvb@escdef \vvb@enddef \let\nvbOxverbatim\relax}
130 \def\vvb@bnonverb#1{\vvb@nvfont \vvb@regaincat

131 \ifx\verbatim@nolig@list\undefined \O@makeother\‘\relax

132 \else \let\do\@makeother \verbatim@nolig@list \fi

133 \catcode‘#1\active \vvb@enonverb}

134 \let\vvb@@bnonverb\relax

135 \let\vvb@@enonverb\relax

136 \def\do#1{\catcode ‘\noexpand#1\number\catcode ‘#1\relax}
137 \edef\vvb@regaincat{\dospecials}

138

The macro \vvb@escdef simply let \active character ‘\’ act as the macro \vvb@esc, while
\vvb@enddef defines the macro \vvb@endenvir as “end{(env)}” referring the environment
name saved in \vvb@currenvir. Since these two macros has ‘\’, ‘{’ and ‘}’ of “other”
category, the well-known technique replacing them is used.

139 \begingroup \catcode‘\|\z@ \catcode‘\[\@ne \catcode‘\]\tw@
140 \@makeother\{ \@makeother\} \catcode‘\\|active

141 |gdef | vvb@escdef [|1et\|vvb@esc]

142 | gdef | vvb@enddef [| edef | vvb@endenvir [end{|nvb@currenvir}]]
143 |endgroup

144

The macro \vvb@esc for ‘\’ in \active examines if it is followed by end{(env)} stored
in \vvb@endenvir. The examination is done in character-by-character manner by \vvb@
checkend because we might have a partially matching sequence followed by non-verbatim
stuff which cannot be picked before the \catcode modification. The comparison for the
examination is done by \ifx because we might have an \active character.

If we find the terminator, we call \end{{env)} to close the environment. Otherwise, the
\char-acter ‘\’ followed by the partial matched (possibly empty) sequence followed by the
unmatched character are inserted back.

145 \def\vvb@esc{\let\@tempa\vvbQendenvir \let\Q@tempb\@empty \vvb@checkend}
146 \def\vvb@checkend#1{\edef\Q@tempc{\expandafter\Q@car\Q@tempa\@nill}y,

147 \def\@tempd{#1}\ifx\Q@tempc\Q@tempd

148 \edef\@tempa{\expandafter\Q@cdr\@tempa\@nil}y,

149 \ifx\@tempa\@empty

150 \edef\next{\noexpand\end{\nvb@currenvir}l}y

151 \else

152 \edef\@tempb{\@tempb#1}\let\next\vvb@checkend \fi
153 \else \def\next{\char‘\\\Q@tempb#1}\fi

12

\newverbatiminput
\renewverbatiminput
\vvb@Xnewverbatim

\nvb@xnewvinput
\nvb@xnewvinputnodef
\nvb@xnewvinputdefault

154 \next}
155
156 %4 L

3.3.4 Verbatim Input

The macros \newverbatiminput and \renewverbatiminput call the common macro \nvb@
newverbatim described in §3.2 to check the existence of optional arguments, making \nvb@
Xnewverbatim \let-equal to their own version, \nvb@xnewvinput.

157

158 %% Verbatim Input

159

160 \def\newverbatiminput{\let\nvb@newenv\newenvironment

161 \let\nvb@Xnewverbatim\vvb@xnewvinput \nvbOnewverbatim}
162 \def\renewverbatiminput{\let\nvb@newenv\renewenvironment

163 \let\nvb@Xnewverbatim\vvb@xnewvinput \nvb@newverbatim}
164

The macro \nvb@xnewvinput defines environments of weird names, {command) name fol-
lowed by a space and a ‘¥’ for starred-version. The (command) itself is defined to call
\begin{(env)} or \begin{(env)*}, where (env) is what we now define, according to the
existence of ‘*’ following the (command).

Prior to defining (env), we check if the optional (n-args) is zero, and makes it one if so for
the argument (file). We also check the existence of the (default) argument, because if omit-
ted (file) is the first argument as \vvb@xnewvinputnodef defines, while the second otherwise
as \vvb@xnewvinputdefault does. The core of the definition is in the (beg-def-inner) part
given to \nvb@xnewverbatim. In this part, we redefine \nvb@xverbatim as \end{(env)?}
and then \input the (file) so that the environment is immediately closed after the (file) is
read verbatim.

165 \def\vvb@xnewvinput#1 [#2] [#3]{/,

166 \edef\Q@tempa{\expandafter\Q@cdr\string#1\@nil\space}

167 \edef#1{\noexpand\@ifstar{\noexpand\begin{\@tempax*}}J,

168 {\noexpand\begin{\@tempal}}}/

169 \ifnum#2=\z@

170 \edef\@tempa{\noexpand\nvb@xnewverbatim{\@tempal}[1]}

171 \else

172 \edef\@tempa{\noexpand\nvbO@xnewverbatim{\@tempal} [#2]}\fi

173 \def\@tempb{#3}\ifx\@tempb\@empty \let\@tempb\vvb@xnewvinputnodef

174 \else \let\@tempb\vvb@xnewvinputdefault \fi
175 \@tempb [#3]}

176 \def\vvb@xnewvinputnodef [#1]#2#3{%

177 \@tempa [#1] {#2}{#3%

178 \edef\nvb@xverbatim{\noexpand\end{\nvb@currenvir}}\input{##1}}}
179 \def\vvb@xnewvinputdefault [#1]#2#3{%

180 \@tempa [#1] {#2}{#3%

181 \edef\nvb@xverbatim{\noexpand\end{\nvb@currenvir}}\input{##2}}}
Acknowledgments

The author thanks to Noboru Matsuda and Carlos Puchol whose posts to news groups
triggered writing very first version of macros in newvbtm and varvbtm.

13

For the implementation of these style files, the author refers the base implementations
of the macros for verbatim environment. These macros are written by Leslie Lamport as a
part of WTEX-2.09 and I¥TEX 2¢ (1997/12/01) to which Johannes Braams and other authors
also contributed.

14

