
Cubic B-splines Using PSTricks

Michael Sharpe

msharpe@ucsd.edu

A cubic uniform B-spline curve with control points B0 . . . Bn is a curve
parametrized by the interval [0, n], which is C2-continuous (that is, has
continuous curvature) and is on each interval [k − 1, k] given by a cubic
Bézier curve whose control points are derived from the (Bk). These curves
are discussed in any reasonably modern text on Numerical Analysis. One
easily accessible source is the UCLA lecture notes of Kirby Baker:

http://www.math.ucla.edu/~baker/149.1.02w/handouts/dd_splines.pdf

I’ll focus on two special cases: (i) relaxed, uniform B-splines; (ii) periodic,
uniform B-splines. Uniform refers to the condition mentioned in the first
paragraph: each Bézier sub-curve is parametrized by an interval of length 1.
Relaxed means that the curvature at the endpoints t = 0, t = n is zero. Peri-
odic means in effect that the Bi repeat periodically, and the curve generated
is a closed curve.

1 Relaxed, Open B-spline

The algorithm has the following steps.

• The curve starts at B0 and ends at Bn.

• Divide each line Bk−1Bk into equal thirds, with subdivision points
labeled Rk−1, Lk respectively, so that Bk has Lk as its immediate
neighbor to the left, and Rk as its immediate neighbor to the right.

• For 0 < k < n, divide the line segment LkRk in half, letting Sk denote
the midpoint. In effect, for 0 < k < n, Sk = (Bk−1 + 4Bk + Bk+1)/6.

• Let S0 = B0 and Sn = Bn.

• For 0 < k ≤ n, construct the cubic Bézier curve with control points
Sk−1, Rk−1, Lk, Sk, parametrized by k − 1 ≤ t ≤ k.

The pst-Bspline package implements this algorithm as \psBspline, whose
simplest form is, for example

\psBspline(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

1

http://www.math.ucla.edu/~baker/149.1.02w/handouts/dd_splines.pdf


The coordinates are the B-spline control points. Aside from the usual key-
words, like linestyle, linecolor and arrows, there is a Boolean keyword
showframe. The effect of showframe=true is to show the intermediate points
and lines in the algorithm described above.

There is another optional argument that can be applied if you wish to be able
to refer to any of the points constructed in the algorithm. By example,

\psBspline{B}(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

sets the root of the naming scheme to B, the effect of which is that the B-
spline control points will be nodes of type \pnode with names B0, B1 and
so on, the other points being similarly named BL0, BL1, ... , BR0, BR1, ... ,
BS0, BS1, ... . For example, to draw a line between BL1 and BS4, just use
\ncline(BL1)(BS4).

The algorithm is implemented entirely in PSTricks code, without any Post-
Script programming at all, depending for the most part on the flexibility
of nodes, and above all the \multido macro, which allows one to construct
with relative ease items that look and feel like arrays. Use of \SpecialCoor
is essential.

There is a closely related macro \psBsplineE which removes the first and
last Bézier segments, much as \psecurve acts in relation to \pscurve,
allowing one one to draw B-splines with non-zero curvature at the end-
points.

\documentclass{article}

\usepackage{pstricks}

\usepackage{multido,pst-node,pst-bspline}

\pagestyle{empty}

\begin{document}

\SpecialCoor % essential for pst-bspline package

\psset{unit=.6in}

\begin{pspicture}[showgrid=true](-.5,-.5)(6,5)

\psBspline[showframe=true]{B}(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

\multido{\i=0+1}{5}{\uput[20](B\i){B\i}}

\uput[90](B5){B5}

\uput[90](BS1){S1}

\uput[90](BS2){S2}

\uput[180](BS3){S3}

\uput[270](BS4){S4}

\uput[-45](BR1){R1}

2



\uput[-45](BL2){L2}

\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b

b

b

b

B0

B1

B2

B3

B4

B5

S1

S2

S3

S4

R1

L2

\documentclass{article}

\usepackage{pstricks}

\usepackage{multido,pst-node,pst-bspline}

\pagestyle{empty}

\begin{document}

\SpecialCoor % essential for pst-bspline package

\psset{unit=.6in}

\begin{pspicture}[showgrid=true](-.5,-.5)(6,5)

\psBsplineE[showframe=true]{B}(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

\multido{\i=0+1}{5}{\uput[20](B\i){B\i}}

\uput[90](B5){B5}

\uput[90](BS1){S1}

\uput[90](BS2){S2}

\uput[180](BS3){S3}

\uput[270](BS4){S4}

\uput[-45](BR1){R1}

\uput[-45](BL2){L2}

3



\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b b

b

b

B0

B1

B2

B3

B4

B5

S1

S2

S3

S4

R1

L2

2 Periodic B-spline

The result here is a closed curve. The algorithm is essentially the same as
in the preceding case, except:

• Extend Bi periodically with period n + 1, so that Bn+1 = B0 and
Bn+2 = B1.

• Construct Ri, Li for 0 < i < n + 2, as above.

• Construct Sk as above (midpoint of LkRk), for 0 < k < n + 2.

• Set S0 = Sn+1.

• For 0 < k ≤ n+1, construct the cubic Bézier curve with control points
Sk−1, Rk−1, Lk, Sk, parametrized by k − 1 ≤ t ≤ k.

The macro in this case is \psBsplineC, where the C stands for Closed.
The code, being implemented as a \pscustom object, does not accept the

4



doubleline keyword, but does accept, for example,

fillstyle=solid,fillcolor=gray

\documentclass{article}

\usepackage{pstricks}

\usepackage{multido,pst-node,pst-bspline}

\pagestyle{empty}

\begin{document}

\SpecialCoor % essential for pst-bspline package

\psset{unit=.6in}

\begin{pspicture}[showgrid=true](-.5,-.5)(6,5)

\psBsplineC[showframe=true]{B}(.5,.5)(2,0)(5,2)(6,4)(4,5)(2,4)

\multido{\i=0+1}{5}{\uput[20](B\i){B\i}}

\uput[90](B5){B5}\uput[90](BS1){S1}

\uput[90](BS2){S2}\uput[180](BS3){S3}

\uput[270](BS4){S4}\uput[-45](BR1){R1}

\uput[-45](BL2){L2}

\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b

b

b

b

b

B0

B1

B2

B3

B4

B5

S1

S2

S3

S4

R1

L2

5



3 Related constructions

There are in addition three additional macros that draw similar curves, but
organized in a slightly different way. They are particularly useful when there
is a sequence of points already defined as \pnodes. Here is a simple way to
define such a sequence.

3.1 The pnodes macro

The line

\pnodes{P}(2,1.5)(3,4)(5,1)

defines a sequence of \pnodes with the node root P: P0=(2,1.5), P1=(3,4)
and P0=(5,1). The sequence may be any (reasonable) length. The macro
leaves an entry in the console saying that it has defined nodes P0 .. P2.
The three new macros are:

\psBsplineNodes{<node root>}{<top index>}

\psBsplineNodesC{<node root>}{<top index>}

\psBsplineNodesE{<node root>}{<top index>}

corresponding to the macros \psBspline, \psBsplineC and \psBsplineE.
The difference is that the macros with Nodes in the name have as arguments
the root node name and the last index, rather than the list of points. For
example, with the above definition of P in force, \psBsplineNodes{P}{2}
has exactly the same effect as \psBspline(2,1.5)(3,4)(5,1).

4 B-spline Interpolation

This is the inverse problem. Being given points (Sk)0≤k≤n, the goal is to
produce the B-spline control points Bk leading to the points Sk, so that the
associated B-spline curve interpolates the Sk.

4.1 Open curve

We discuss first the case of an open, uniform B-spline curve with relaxed
endpoints. According to the discussion above, we have to solve the equa-

6



tions

B0 = S0

B0 + 4B1 + B2 = 6S1

B1 + 4B2 + B3 = 6S2

· · ·

Bn−2 + 4Bn−1 + Bn = 6Sn−1

Bn = Sn

for the Bk. In matrix form, this becomes the tridiagonal system













4 1
1 4 1

1 4 1
· · · 1

1 4

























B1

B2

B3

· · ·

Bn−1













=













6S1 − S0

6S2

6S3

· · ·

6Sn−1 − Sn













The LU decomposition of the tridiagonal matrix may be seen to take the
form













1
m1 1

m2 1
· · ·

mn−2 1

























m−1
1 1

m−1
2 1

m−1
3 1

· · · 1

m−1
n−1













where m1 = 1/4, mk+1 = 1/(4 − mk) for k = 1, · · · , n − 2. The solution
of the original system is therefore accomplished in two steps, introducing
intermediate points (Rk), by (in pseudo-code)

R_1=6*S_1-S_0

for i=2 to n-2

R_i=6*S_i-m_{i-1}* R_{i-1}

R_{n-1}=(6*S_{n-1}-S_n)-m_{n-2}*R_{n-2}

B_{n-1}=m_{n-1}*R_{n-1}

for i=n-2 downto 1

B_i=m_i*(R_i-B_{i+1})

The code for the \psBsplineInterp command uses this algorithm to solve
for the Bk as nodes, except that in order to save node memory, the B nodes
are substituted in place for the R nodes, so that, for example, the first step
becomes B_1=6*S_1-S_0.

7



Assuming you have previously defined nodes S0 · · · S4,

\psBsplineInterp{S}{4}

will construct a sequence SB0 · · · SB4 of nodes at the B-spline control points
for the relaxed, uniform cubic B-spline interpolating the Sk, and this curve
may then be rendered with the command

\psBsplineNodes{SB}{4}

If you don’t care about keeping track of the internal operations and names
for nodes, you may generate the curve directly with, for example,

\psbspline(0,0)(.5,.1)(1.5,.6)(2.5,1.4)(3.5,1.8)(4.5,1.7)%

(5.8,1.0)(7.5,.25)(10,0)

4.2 Closed (periodic) case

We turn now to the periodic uniform B-spline curve interpolating n points
S0,...,Sn−1. Extend the sequence periodically with period n, so that Sn = S0,
Sn+1 = S1, S−1 = Sn−1, and so on. In order to find the periodic control
points Bk, we have to solve the n equations

Bn + 4B1 + B2 = 6S1

B1 + 4B2 + B3 = 6S2

· · ·

Bn−2 + 4Bn−1 + Bn = 6Sn−1

Bn−1 + 4Bn + B1 = 6Sn

for the Bk, 1 ≤ k ≤ n. In matrix form, this becomes the system












4 1 1
1 4 1

1 4 1
· · · 1

1 1 4

























B1

B2

B3

· · ·

Bn













=













6S1

6S2

6S3

· · ·

6Sn













Let (xk, yk) = 6Sk. We perform Gaussian elimination on the matrix












4 1 1 x1 y1

1 4 1 x2 y2

1 4 1 x3 y3

· · · 1
1 1 4 xn yn













8



As in the previous case, let m1 = 0.25, mk = 1/(4 − mk−1) for k ≥ 2. The
factor mk will be the multiplier of row k after the previous row operation,
in order to normalize the row. These are the steps in the procedure.

• Initialize: multiply row 1 by m1 so that its first entry (1,1) is 1. Replace
x1 by m1x1 and y1 by m1y1. Entry (1, n) is m1.

• Subtract new row 1 from row 2 and multiply the resulting row by m2.
The leading entry (2,1) becomes 1. Entry (2, n) becomes −m1m2, and
x2, y2 are updated to m2(x2 − x1), m2(y2 − y1). The superdiagonal
entry (2,3) is the only other non-zero entry, and its new value is m2.

• Subtract new row 1 from row n, so that its leading entry (n, 2) is −m1.

• Subtract new row 2 from row 3 and multiply the result by m3. The
leading entry (3,3) becomes 1 and the entry (3, n) becomes m1m2,
with x3, y3 updating to m3(x3 − x2), m3(y3 − y2). The superdiagonal
entry (3,4) is now m3.

• Subtract new row 2 times −m1 from row n, whose leading entry (n, 3)
is now m1m2.

• Continue in this way until row n−2 has been subtracted as above from
row n−1, multiplying the result by mn−1, and a suitable multiple has
been subtracted from row n. The leading entry of row n − 1 (column
n−1) is 1 and its nth entry is 1−(−1)nm1 · · ·mn−2. Row n has leading
entry in column n − 1, equal to 1.

• Finally, subtract an appropriate multiple of row n − 1 from row n so
that row n has leading entry in column n. The resulting matrix is
upper triangular, and we may now substitute back starting from the
last row to give a complete reduction.

Here are the steps in pseudocode. We keep track of row n with the array
bk, column n with the array ck. The indices for both run from 1 to n.

m(1)=0.25

for k=2 to n-1

m(k)=1/(4-m(k-1))

b(1)=1

b(n-1)=1

b(n)=4

c(n-1)=1% don’t need c(n), =b(n)

%multiply first row by m1

9



c(1)=m(1)

x(1)=m(1)*x(1)

y(1)=m(1)*y(1)

for k=2 to n-1

%subtract normalized row k-1 from row k, renormalize row k

c(k)=m(k)*(c(k)-c(k-1))%note that initially, c(k)=0 for 1<k<n-1

x(k)=m(k)*(x(k)-x(k-1))

y(k)=m(k)*(y(k)-y(k-1))

%subtract normalized row k-1 times b(k-1) from row n

b(k)=b(k)-b(k-1)*m(k-1)

b(n)=b(n)-c(k-1)*b(k-1)

x(n)=x(n)-x(k-1)*b(k-1)

y(n)=y(n)-y(k-1)*b(k-1)

% subtract row n-1 times b(n-1) from row n, renormalize by 1/b(n)

b(n)=b(n)-b(n-1)*c(n-1)

x(n)=(x(n)-x(n-1)*b(n-1))/b(n)

y(n)=(y(n)-y(n-1)*b(n-1))/b(n)

%work back

x(n-1)=x(n-1)-c(n-1)*x(n)

y(n-1)=y(n-1)-c(n-1)*y(n)

for k=n-2 downto 1

x(k)=x(k)-m(k)* x(k+1)-c(k)*x(n)

y(k)=y(k)-m(k)* y(k+1)-c(k)*y(n)

This algorithm is implemented in TEX/PostScript code in pst-Bspline.tex

and may be invoked using the macro

\psBsplineInterpC{<node root>}{<index>}

You must previously have defined a sequence, say S0 · · · S100 of \pnodes
that you plan to interpolate with a closed curve. Then

\psBsplineInterpC{S}{100}

constructs the sequence SB0 · · · SB100 of B-spline control points (append-
ing B to the root name) for a closed curve interpolating S0 · · · S100, which
may then be rendered with the command

\psBsplineNodesC{SB}{100}

with any keywords options you wish.

The following example illustrates that there is a difference between \psccurve

and B-spline interpolation, the former having a rounder appearance. Gener-

10



ally speaking, B-spline interpolation comes closer to minimizing the average
curvature.

\documentclass{article}

\usepackage{pstricks}

\usepackage{pst-bspline,pstricks-add}

\begin{document}

\begin{pspicture}[showgrid=true](-.5,-.5)(6,5)

\pnodes{P}(0,1)(2,0)(5,2)(6,4)(4,5)(2,4)

\psBsplineInterpC{P}{5}

\psBsplineNodesC*[linecolor=gray!40]{PB}{5}

\psccurve[linecolor=red,showpoints=true](0,1)(2,0)(5,2)(6,4)(4,5)(2,4)

\end{pspicture}

\end{document}

Slight difference between psccurve and B-spline interpolation

0 1 2 3 4 5 6
0

1

2

3

4

5

b

b

b

b

b

b

11



\documentclass{article}

\usepackage{graphicx}

\usepackage{pstricks}

\usepackage{pst-bspline,pstricks-add}

\begin{document}

\psset{unit=.25in}

\begin{pspicture}[showgrid=true](-.5,-.5)(6,5)

\pnodes{P}(0,1)(2,0)(5,2)(6,4)(4,5)(2,4)

\pnode(3,3){C}

\multido{\ra=0+.05,\rb=1+.05,\i=30+1}{40}{%

\psBsplineC*[linecolor=blue!\i!brown]{B}%

([nodesep=\ra]{C}P0)([nodesep=\ra]{C}P1)%

([nodesep=\ra]{C}P2)([nodesep=\ra]{C}P3)%

([nodesep=\ra]{C}P4)([nodesep=\ra]{C}P5)}

\end{pspicture}

\end{document}

0 1 2 3 4 5 6
0

1

2

3

4

5

12


	Relaxed, Open B-spline
	Periodic B-spline
	Related constructions
	The pnodes macro

	B-spline Interpolation
	Open curve
	Closed (periodic) case


