Qe Wgdl @V WO e o Wrm (T % © o
N ks> @ k’% o- %n' a& A ‘QQ¥
s 2@ R TR “3 4 Sy #7879
b i St e S N
Ty S AT Sty T o s I
\/' O X INFS v
S e SOV JSof IWEe g ¥ Vg
&‘7? 1y 2 A * s
Y3y, a2 VR
: ! e 8 70 z
g $§\ % +O+\Jw\ s wa’s, T RS N @ e
.) Y > 2
«'%@fﬁ OB AU - aa i ¢ %
S)? 559 2 gt P % N <o E Jd
go‘of aneg + d‘_‘_“ >~ & 2 i/ 7 $
VNGO Gy 5 % . N Z i S« X S
g,) é (N % & @ <, é v - 2 & ?® W "%S’
[. -
N <&~ 1 S 2 >
7o R RN §§ O Ok 2 3
i« \ ‘3\.< 9) < d% 2 b 2
~0 S &
Loz Y}i\ v G
X@
4 Contents
& O o Changes 2
2y & 1 Introductory remarks 3
b G‘ﬂ 2 Let’s search 4
HU 3 What XgSearch looks for and how it finds it 5
2 4 (A very blunt form of) regular expressions 7
8% <& 5 Search order(s) 8
5 5.1 Strictly identical searches L. 9
78 5.2 Affixes with identical characteristics 9
o~ 5.3 Differentsearches 10
A 6 Some TgXnical matters 11
7 Examples 13
71 Spelling 14
w 72 Wordcount. 15
~ 7.3 Syntax highlighting: TEX 15
7.4 Syntax highlighting: HTML 16
9 8 Implementation 19
8.1 Firstthingsfirst 19
It 8.2 Characterclasses 21
D 83 Searchlists 25
> 8.4 Testingwords 38
~ A 8.5 Searchorder 44
& U 8.6 Miscellanea 49
% 8.7 A third party file for ConTgXt 50
s 9 Index 52
9

XgSearch user guide ® 2

o Changes

2009/11/04 Corrected for ConTgXt (thanks to Wolfgang Schuster):
Now there’s a third party file, t-X3Search. tex, so that X3Search can be prop-
erly loaded with \usemodule[X3Search].
The clash between ConTgXt’s \unexpanded macro and XgIEX’s (actually e-TgX’s)
\unexpanded primitive has been fixed.

2009/10/24 Initial version

1 Introductory remarks

1. This set of macros requires the X4IgX engine.

2. This set of macros is totally experimental.

3. This set of macros is written with plain X§TEX, and so it should be compatible with all
formats, at least if they implement such basic macros as \newcount or \newif, which is
the case at least for IXTEX and ConTgXt.

4. As a consequence of the preceding remark, I've used in the examples of this documenta-
tion control sequences that don’t exist in any format (as far as I know) but whose meaning
is transparent enough, like \blue or \italics, which typeset blue and italics. They are
not part of XgSearch.

5. This set of macros tweaks XqIEX’s character class mechanism badly. This mechanism
was not designed to do what it does here. Anyway, since it is used mainly for non-
alphabetical writing systems, there’s little chance of clashing with XgSearch. I have tried
to make X3Search compatible with Frangois Charette’s polyglossia for language with spe-
cial punctuation pattern, like French. I have not tried to patch babel German shorthands
in polyglossia, simply because I was not able to make them work.

6. X3Search is local all the way down, that is, there’s not a single global command. So it
can be used in a controlled way.!

7. To see what X3Search does, see example 1 on the right.

8. To load the package in IATEX, say

\usepackage{xesearch}
In ConTgXt:

\usemodule[xesearch]
In plain XgIEX:

\input xesearch.sty

1If your knowledge of TEX is confined to IXTEX, you might not be very familiar with the notion of locality to
groups, since in IXTEX pretty much everything is global by default, whereas in plain TEX the contrary holds. So
to make things simple, just remember that if you use XgSearch inside a XTEX environment, even one you've
defined yourself with \newenvironment, nothing will spread outside this environment. (I don’t know the
situation for ConTEXt, so I won't say anything.)

XgSearch user guide ® 3

\SearchList{color}{\csname#l\endcsname{#1}}{blue,red,green}
This is blue and this is red and this 1is green,
but apparently yellow was not defined.

This is blue and this is red and this is , but apparently yellow was not
defined.

ExamrLE 1: A SimpPLE ExaMPLE

2 Let’s search

e \SearchlList(*!){(name)}{(replacement text)}{(list of words)}

The star and exclamation mark are optional and their relative order does not matter. Stick-
ing to mandatory arguments for the moment, here’s how this macro works: first, you give
a (name) to this list, for further reference. Then you specify the (replacement text), which
will be substituted for all of the words in (list of words) (separated by commas). In this
(replacement text), the substituted word is designed by #1, so just think about it as an ar-
gument to a control sequence. If you forget #1, the word disappears (until we learn how
to use the exclamation mark), as can be seen in example 2.

Note that there’s still a space between forgotten and the full stop. Where does it come
from? Well, it is the space that was between forgotten and something. At the time when
X3Search manipulates something, this space has already been read and typeset, so it does
not disappear.

But there’s something much more interesting in this example. As you might have
noticed, the first line says:

\SearchList{1istl1}{\italics{#1}}{obviously}

and in the text to be searched we find “Obvious1y’, with an uppercase first letter. Nonethe-
less, it is found and modified according to the replacement text. We thus discover one
basic principle of X3Search: it isn’t case-sensitive by default. Hence the two following lists

\SearchList{Tistl}{<whatever>}{word}
\SearchList{Tist2}{<whatever>}{Word}

will find exactly the same set of words, namely ‘word” ‘Word’, ‘woRd’, ‘WORD’, etc. How
scary. This isn’t customary in good programming and in TgX in particular. Fortunately,
this default setting can be easily changed: the optional star just after \SearchList will
make the entire list case-sensitive. Besides, if a list is not case-sensitive, i.e. if it has no
star, a star before a word in that list will make the search for that particular word case-
sensitive.? This is illustrated in example 3.

In this example we discover another macro, whose meaning is clear:

e \StoplList{(list of lists)}
The lists, separated by commas, are turned off.

2However, if \SearchList is suffixed with a star, all words in the list will be case-sensitive.

XgSearch user guide ® 4

\SearchList{listl}{\italics{#1}}{obviously}
\SearchList{1list2}{}{something}
Obviously, I have forgotten something.

Obviously, 1 have forgotten .

ExaMprLE 2: WORDS AS ARGUMENTS

\SearchList{Case insensitive}{\blue{#1}}{woRd}
Word word woRd WORD
\StopList{Case insensitive}

Word word woRd WORD

\SearchList*{Case sensitive}{\red{#1}}{word}
Word word woRd WORD
\StopList{Case sensitive}

Word word woRd WORD

\SearchList{Mixed}{\green{#1}}{word, *Worm}
Word word woRd WORD\par
Worm worm woRm WORM\par

worm woRm WORM

EXAMPLE 3: ILLUSTRATING CASE-SENSITIVITY

Let’s turn back to \SearchList again. It can also take an exclamation mark beside
the star (the order between the two of them is not important). In this case, the word
is not subsituted anymore; i.e. the replacement text will follow the word (still with #1
standing for it). These concatenating replacements are very dangerous because they are
expanded after the search has started again. You see what I mean: if the word you've
found does not endure some transformation that’ll make it different from itself as far as
typesetting is concerned, ooops, here’s the loop. WORD expands to WORD\ command{WORD?}
to WORD\ command {WORD\ command{WORD}}, etc., and there’s no way out of it.

So, what’s the point? The point is: the reason why those replacements are placed
after the no-search area has stopped is because they are meant to host argument-taking
commands to act on the rest of the streams. Such commands can’t be placed in normal
replacement texts without an exclamation mark, because they would stumble upon pre-
cisely what starts the search again. So be careful. Either use !-marked searches with
non-typesetting macros, for instance to index the word, or make sure that you know ex-
actly the many interactions you might create. The exclamation mark says it all. Example 4
is silly but I hope you can see the point.

Note the space at the beginning of the first and third replacement texts. Concatenating
replacement texts (which replace nothing but whatever) stick to their targets. Besides, in
the third example, \green would have gobbled the subsequent space.

I hope you have noticed that the Hamlet list contains not a word but a phrase. So
you know: X3Search can find phrases. Now we can’t avoid going into a little more detail
concerning the way XgSearch works. But before that, let’s see one simple macro:

\AddTolList(*!){(name)}{(list of words)}

This adds the words to the (name) list, which of course should already exist. The presence
or absence of a star and/or an exclamation mark doesn’t depend at all on the original list.
You can see that in example 5.

Finally, the words in \SearchList and \AddToList should be made of characters only,
but these can be the product of expansion. For instance, if you have \def\word{a word},
then you can say \AddToList{mylist}{\word}. If anything else shows up X3Search won't
accept the word (and you’ll probably have a good deal of errors beforehand).

3 What XgSearch looks for and how it finds it

X3Search can see only two things: letters and non-letters. Non-letters it doesn’t like be-
cause it’s then forced to spit the letters it has gathered and form a word, and most times

XgSearch user guide ® 5

\SearchList*!{Hamlet}%
{ Or Not \StopSearching#l\StartSearching}%
{To Be}

To Be...

To Be Or Not To Be...

\SearchList!{typo}{\red{!!!}}{tipo}
There's a tipo here.

There’s a tipo!!! here.

\SearchList!{XeTeX}{ \green}{is}
This is \XeTeX.\par

This is

ExamrLE 4: A Siiry ONE

\SearchList{Stupid Tist}{\blue{#1}}{word}
Word and beep.

\AddToList*{Stupid Tist}{Beep}

Or Beep and word and beep.

Word and beep. Or Beep and word and beep.

ExampLE 5: ADDING WoORDs To AN ExisTING LisT
(ANOTHER S1LLY ONE)

it’s not allowed to take it away. (Un)fortunately, X3Search is quite short-sighted: it con-
siders letters what you tell it are not non-letters (X3Search apparently has some formal
education in philosophy).

More seriously (and clearly), X3Search forms a word as long as there are letters. As
you can see in example 6, macros are expanded and if they yield letters, X3Search can
recognize a word. So when does it stop searching? There are two main cases:

1. It encounters a space, or any primitive control sequence. The former case is quite nat-
ural: you want spaces to delimit words (including \skips and associates). But the latter
is less obvious: as soon as TEX does something that is not typesetting letters, XgSearch
gives up. And this includes something as seemingly innocuous as a \relax, as you can
see in example 7. That’s the reason why, for instance, X3Search will never find TeX in
\TeX: the definition contains many operations that aren’t strictly speaking putting letters
in the stream. Fortunately, the bulk of a manuscript is made of letters and spaces, and
one seldom inserts \relaxes in the middle of words.

2. X3Search encounters a character that you've declared as a non-letter, that is a word
boundary. This leads us to the following macro:

\MakeBoundary{(characters)}
\UndoBoundary{(characters)}

The characters should be simply put one after the other, as in for instance

\MakeBoundary{,;:!}
\UndoBoundary{? O\{\}}

The basic set of such characters is as follows?
7= O 04

Now, if XgSearch encounters a character that you've made into a boundary, it will stop
forming a word and evaluate what it has gathered. Conversely, such characters cannot
appear in the list of words in \SearchList; they wouldn’t be found anyway. This is illus-
trated in example 8.

There is one big difference between those two cases. Characters defined as boundaries
are not only word boundaries but also phrase boundaries. If XgSearch smells a possible
phrase, spaces and primitive commands won't stop it, whereas boundary characters will.

3That is: full stop, comma, semi-colon, colon, exclamation mark, question mark, dash, inverted comma,
apostrophe (i.e. left and right quote), parentheses, brackets, curly braces. This is rather arbitrary, despite
some basic sensible assumptions.

XgSearch user guide ® 6

\SearchList{Will it find me?}{\blue{#1}}{word}
\def\rd{rd}
Here is a wo\rd.

Here is a word.

ExamPLE 6: Macros CaN’t HIDE LETTERS

\SearchList{This time I'm prepared}{\blue{#1}}{word}
\def\rd{\relax rd}
Here is a wo\rd.

Here is a word.

ExamrLE 7: But PRiMITIVE CAN

\MakeBoundary{/}
\SearchList{separated}{\ddag#l\ddag}{waka, jawaka}
Waka/Jawaka

tWakat/tJawakat

\UndoBoundary{/}
\SearchList{united}{\ddag#1l\ddag}{waka/jawaka}
Waka/Jawaka

tWaka/Jawakat

ExaMrLE 8: WHERE WORDS START AND STOP

You can see that in example 9. This example also illustrates one fact and one sad truth. The
fact is that words aren’t searched for inside phrases; so the first two you’s were not turned
to italics, since they belonged to you are what you is. The third one, one the other hand, was
recognized since you are neither good nor bad was missed because of the intervenig comma.

The sad truth is that the \kern disappeared. This is one shortcoming of X3Search:
primitives disappear when they’re in the middle of a possible phrase, even if that phrase
is not recognized in the end. By “possible phrase” I mean a string of words that form the
beginning of a phrase that you want identified, e.g. the kern in

\SearchList{H(a)unting primitives}{<whatever>}%
{xesearch feeds on kerns}
xesearch feeds on\kernlcm skips

will disappear, even though no string matches in the end. Hopefully such commands are
rather rare in the bulk of a document. If some are unavoidable — and for other uses too —
there exists a pair of commands, whose function I probably don’t need to explain (except
that \StartSearching doesn’t need to be issued at the beginning of your document, it is
there by default):

\StartSearching
\StopSearching

4 (A very blunt form of) regular expressions

Words are cool, and phrases too. But life doesn’t always reach their level of achievement.
Sometimes you don’t know what you want. Something beginning with a ‘B’, why not?
or maybe something that ends in “et’? Then look at example 10.

There are several things to see in this example. First, X3Search has entered the \italics
command and imposed its will.* Next, affixes® are also sensitive to case-sensitivity, so to
speak, since beside was not identified (*B? being case-sensitive), whereas PET was found
(?et not being case-sensitive). Note that a word matches an affix search if it is at least as

“Provided I'm using commands that don’t cancel each other, like plain TgX’s \bf and \it.

5] use the word affixes to refer to both prefixes (like B?) and suffixes (like ?et). From a linguistic point of
view, prefixes and suffixes (and infixes, actually) are indeed affixes, but from the same point a view, what
we're talking about here has nothing to do with prefixes or suffixes, just with bits of words. I hope you don’t
mind.

XgSearch user guide ® 7

\SearchList{word}{\italics{#1}}{you}
\SearchList{phrases}{\red{#1}}

{you are what you is,

you are neither good nor bad}

You are what\kernlcm % What a kern!
you is but you are neither good, nor bad.

You are what you is but you are neither good, nor bad.

ExamPLE 9: PHRASES AND WORDS

\SearchList{Affixes}{\red{#1}}{*B?,?et,?ET}

A \italics{Black Page} in B, actually some kind of
duet for Terry Bozzio and Chad Wackerman, Tay
on the drumset beside the PET facility.

A Black Page in B, actually some kind of duet for Terry Bozzio and Chad
Wackerman, lay on the drumset beside the PET facility.

ExamMprLE 10: PREFIXES AND SUFFIXES

long as the specified part of the affix. Thus, B matches B?. So the question mark means
‘from zero to any number of additional letters,” and not ‘at least one additional letter.”
Phrases can take only suffixes, and they affect the last word only. So

\SearchList{1list}{<whatever>}{some interesting wor?}

will find some interesting world, some interesting words, but not some interesting
word thesaurus. An affix mark anywhere else will have no effect.

Marking the unspecified part of a word with 7 is the only possibility for the question
mark to enter a \SearchList, and obviously it doesn’t stand for itself. So, unless of course
you undo it as a string boundary, ? can appear only at the beginning or the end of a word.®
In any other place, it will be recognized as a boundary that has no right to be there and
you’ll be blamed. This means that infixes don’t exist in X3Search, i.e. you can’t say B?et
to search for bullet, for instance. Also, you can’t say 7ull? to match bullet. One affix
at a time.

Finally, don't try to use a joker, i.e.

\SearchList{list}{<whatever>}{?}

as an attempt to match all words. This won’t work.”

5 Search order(s)

Now we shall see what happens when a word is matched by several searches. There are
three different cases:
1. A word is matched by two or more strictly identical searches, e.g.:

\SearchList{listl}{<whatever>}{word}
\SearchList{1ist2}{<whatever else>}{word}
. word ...

2. A word is matched by two or more prefixes or two or more suffixes identical in case-
sensitivity, e.g.:

\SearchList{1istl}{<whatever>}{*wor?}

¢And if a star is present, it should precede the question mark.

7If you want to match all words
\SearchList{list}{<whatever>}{a?,b?,...,z?}
should do. Ok, now you've read it, you might have the impression that the title of this section verges on
dishonesty. You might be right.

XgSearch user guide ® 8

\SearchList{1ist2}{<whatever else>}{*wo?}
. word ...

3. A word is matched by two or more different searches, e.g.:

\SearchList{1istl}{<whatever>}{*wor?}
\SearchList{list2}{<whatever else>}{word}
\SearchList{1list3}{<anything>}{?ord}

. word ...

5.1 Strictly identical searches

In this case, the word will execute all the replacement texts. Their interactions depend on
the way they are defined: the replacement texts that are defined without an exclamation
mark take as arguments the replacement texts that are defined just before them and will
themselves become arguments to subsequent replacement texts. See example 11

If the replacement texts are defined with and exclamation mark, they are simply con-
catenated, and most importantly, their argument is the word itself alone, not the accumu-
lation of previous remplacement texts. See example 12. Of course, if a word is matched
by both kinds of replacement texts, the same rules apply, as in example 13, where you
can also be entertained by some not-very-fun-but-you-can-hopefully-see-the-point-again
fiddling with !-marked macros. If you want to know what those three \expandafters are
doing here, see section 6.

5.2 Affixes with identical characteristics

When a word is found by two or more affixes of the same kind (i.e. only prefixes or
only suffixes) and with the same case-sensitivity, then you decide. X3Search provides the
following commands:

\SortByLength(*){(pPsS)}
\DoNotSort{(pPsS)}
\SearchAll{(pPsS)}
\SearchOnlyOne{(pPsS)}

p, P, s and S are shorthands for (respectively) ‘case-insensitive prefix’, ‘case-sensitive pre-
fix’, ‘case-insensitive suffix” and “case-sensitive suffix’. They refer to the type of affix to
modify and those commands can take one or several of them, e.g. \SearchA11{pSP}. By

XgSearch user guide ® 9

\SearchList{1list1}{\blue{#1}}{blue word}
\SearchList{list2}{\dag#1l\dag}{blue word}
\SearchList{1list3}{\ddag#1l\ddag}{blue word}

This blue word wears earrings and is equivalent
to \ddag\dag\blue{term}\dag\ddag.

This ttblue wordtt wears earrings and is equivalent to fttermtf.

ExamrLE 11: NESTED REPLACEMENT TEXTS

\SearchList!{1listl1}{+}{wor?}
\SearchList!{1ist2}{\dag}{wor?}
\SearchList!{1ist3}{\ddag}{wor?}
This word is a freight train.

This word+t1 is a freight train.

ExaMmprLE 12: CONCATENATION
(YET ANOTHER S1LLY EXAMPLE)

\SearchList{listl}{\green{#1}}{*?0RD}
\SearchList{1ist2}{\ddag#1\ddag}{*?0RD}
\def\whisper#l{\italics{ (#1)}}
\def\ingreen{in green}
\SearchList!{1ist3}

{\expandafter\expandafter\expandafter\whisper}

{*?0RD}
\SearchList!{1ist4}{\ingreen}{*?0RD}
This WORD must be upset.

This 1 (in green) must be upset.

ExamPLE 13: EVERYTHING TOGETHER
(THa1s Is MIND-BLOWING)

default, affixes follow the same rules as full words: each replacement text will take the re-
placement text defined just before as argument. But you can also create an order between
them: with \SortByLength, longer affixes match words before shorter ones, and their re-
placement texts are thus more deeply nested; adding a star to \SortByLength reverses the
order: shorter affixes before longer ones. \DoNotSort resets to default, i.e. replacement
texts follow the order in which they were defined. See example 14.

\SearchAll and \SearchOnlyOne sets what should happen when a word is matched
by an affix: shall the search stop, or shall XgSearch continue to investigate whether other
affixes might fit too? By default, all affixes are tested, but you might want a different
behavior. Thus \SearchOnlyOne{PS} will make case-sensitive prefixes and suffixes search
only once (and thus the order defined just before becomes extremely important) while
\SearchAl1{PS} will return to default, as illustrated in example 15.

5.3 Different searches

Finally, we have to see what X3Search should do when several searches match a word.
Once again, you decide, thanks to the following command:

\SearchOrder{(order and inhibitions)}

You know what p, P, s and S mean; f and F mean ‘case-insensitive full word” and ‘case-
sensitive full word.” In the macro above, (order and inhibitions) is a list of one or more
sequences like f!ps; (with the semi-colon as part of the expression) in which the red part
is optional and which means: if a word matches a full-word case-insensitive search, then
X3Search will not test case-insensitive prefixes and suffixes on this word. Such declara-
tions are put one after the other, and this defines the search order. For instance, the default
order for X3Search is:

\SearchOrder{

F!fPpSs;

f1PpSs;

P!pSs;

p!Ss;

Sls;

S5

}
and it simply means that full words should be searched for before prefixes, and prefixes
before suffixes, with case-sensitive search first in each case, and that any successful search

XgSearch user guide ® 10

\SearchList{Three Tetters}{\ddag#l\ddag}{*adv?}
\SearchList{Two Tetters}{\red{#1}}{*ad?}
\SearchList{Four letters}{\dag#l\dag}{*adve?}

\SortByLength{P} adverb
\SortByLength*{P} adverb
\DoNotSort{P} adverb

ftadverbti tfadverbit tfadverbit

ExamrLE 14: THis Is FAscINATING

\SearchList{just a Tist}{\blue{#1}}{b1?,*bo?}
\SearchList{just another Tist}{\bold{#1}}{blu?,*bol1?}

\SearchOn1yOne{P} Blue and bold and
\SortByLength{P} bold and blue.

Blue and bold and bold and blue.

ExampLE 15: THIS GUY SURE AIN'T NO DAviD FOSTER WALLACE

XgSearch user guide ® 11

inhibits any subsequent test. You can have as many sequences as you wish. If X§IEX goes
crazy and never terminates, then you've probably forgotten a semi-colon (I do it very
frequently). See example 16 for an illustration.

Remember that e.g. word? will find ‘word” as a prefix, not as a full word, so that ‘word’
will not be found if you say for instance \SearchList{list}{<whatever>}{word?} and \SearchList{word}{\green{#1}}{*Word}
\SearchOrdef{f;}. Finally, although something like \SearchOrder{f ;} is perfectly okay \SearchList{prefix}{\frame{#1}}{wor?}
to search for case-insensitive full words only, \SearchOrder{;} will only make XgTEX NSl LB SR N A0 Sl Lol

crazy; \StopSearching is simpler. \Seerd PR pe 2D

This Word is well-matched.
6 Some TgXnical matters NV S

: e £ G g . This Word i t T1-matched c
This section is not vital to the comprehension of X3Search, but it may be useful. 15 Word 1s not so well-matched anymore

e \PrefixFound \SearchOrder{f;}
e \SuffixFound This Word is not matched at all.
e \AffixFound This I:l is well-matched.
This is not so well-matched anymore.

When a word is found thanks to an affix search, the prefix or suffix used is stored in the
relevant macros. If there are several matching affixes, the last prefix and the last suffix win
in their respective categories, and between them the same rule apply for \AffixFound. EXAMPLE 16: SEARCH ORDER
These macros are available as long as the search has not started again, i.e. they're fully
available in normal replacement texts, but in !-marked definitions they’re erased as soon
as a letter is typeset, so they can be used only at the very beginning. The rest of the time

This Word is not matched at all.

they are empty.
The affix itself respects the case in which it was declared if it is case-sensitive, but it is \SearchList{A case-sensitive suffix}{Suf\blue\SuffixFound}{*?FiX}
in lowercase otherwise, however it was fed to \SearchList. See example 17. SufFiX.
e \PatchOutput SufFiX.
¢ \NormalOutput \SearchList{A case-insensitive affix}{\blue\AffixFound fix}{Pre?}
By default, X3Search doesn’t patch the output routine so footers and headers are searched. PREFix.
This can be done by these two commands. \PatchOutput should of course be issued after prefix.
any modification to the output routine. \NormalOutput restores the value of the output
routine at work when \PatchOutput was executed. ExamMPLE 17: FINDING AFFIXES

e \PatchTracing
e \NormalTracing

If you want to give a look at your log file with some tracing on, you will find hundreds if
not thousands of totally uninformative lines. That’s XgSearch recursively discovering new
letters and testing words. With \PatchTracing, X3Search will try to keep quiet during
those painful moments, i.e. \tracingcommands and \tracingmacros will be turned to
zero. It can’t exactly be totally silent, so just know that all its words begin with xse.
\NormalTracing lets X3Search express itself again.

Now just consider example 18. When X3Search reads the input, it introduces itself
to all the letters it doesn’t know. Most importantly, it writes down some information
about them, like their catcode. Now, if a letter is met with a given category catcode, that’s
the way X3Search will remember it, and this will influence how prefixes and suffixes are
recognized. More precisely: the identification of a letter (e.g. the first occurence of it in
the typestting stream) and its definition as part of an affix should be done under the same
category code.

Note that in example 18 I first had to stop the fz list, otherwise the prefix Frank Zap?
would not have been recreated. Another solution would have been to create another
prefix like Frank Za? or *Frank Zap?.

Finally, here’s how replacement texts are processed. Suppose you have:

\SearchList{Tistone}{\italics{#1}}{word}
\SearchList{Tisttwo}{\blue{#1}}{word}
\SearchList{Tistthree}{\bold{#1}}{word}

then X3Search does something like this:

\def\command@listone#1{\italics{#1}}
\def\command@listtwo#1{\blue{#1}}
\def\command@listthree#1{\bold{#1}}

and when word is encountered it is turned to

\expandafter\command@listthree\expandafter{%
\expandafter\command@listtwo\expandafter{%
\expandafter\command@listone\expandafter{\WORD}}}

where \WORD contains exactly word; as you can see, this is equivalent to
\command@listthree{\command@listtwo{\command@listone{word}}}
which you won't have failed to notice is not equivalent to

\bold{\bTue{\italics{word}}}

XgSearch user guide ® 12

\catcode "\Z=12
Here's a Z.
\catcode '\Z=11

\SearchList{fz}{\italics{#1}}{Frank Zap?}
Look, here comes Frank Zappa!

\StopList{fz}

\catcode "'\Z=12

\SearchList{true fz}{\italics{#1}}{Frank Zap?}
One more time for the world.

Here comes Frank Zappa!

Here’s a Z.
Look, here comes Frank Zappa!
One more time for the world. Here comes Frank Zappa!

ExamPLE 18: THE MYSTERIOUS Z

although in this example the difference is immaterial. Now, if you really want three ex-
pansions with superior precision on one word, you probably don’t need X3Search: just
use a good old macro instead.

Finally, !-marked replacement texts are simply concatenated, as in:

\expandafter\command@listone\expandafter{\WORD}
\expandafter\command@listthree\expandafter{\WORD}
\expandafter\command@listtwo\expandafter{\WORD}

Now you can see the reason for the three \expandafter’s in example 13.

7 Examples

X3Search was first designed as the basis for the XgIndex package, an automatic indexing
package for XqI4TEX. It developped into a stand-alone project, and standing so alone that
there are no other application yet. So here are some ideas.

First, this document has the following list:

\SearchList*{logos}{\csname#l\endcsname}{?TeX, ?ConTeXt,xesearch}

(with \xesearch properly defined beforehand) so throughout this document I was able
to type ‘xesearch can do this or that’ to produce ‘X3Search can do this or that’. That’s
not fascinating but it was a test.

Being a linguist I can also directly paste examples from my database and turn on
X3Search to highlight some words. For instance, suppose you're studying the grammati-
calization of, say, going to in English,® and you have many examples. Then you just create
a command like \startexample, or patch an existing command to activate X3Search just
for this stretch of text, among other things. For instance:

\SearchList{goingto}{\bold{#1}}{going to}
\def\startexample{%
Here you can modify margins, for instance.
\StartSearching
}
\def\stopexample{%
\StopSearching

8If you're a linguist, I apologize for my lack of originality.

XgSearch user guide ® 13

Here you restore previous values.

}

Otherwise you can locally use \StopList if you're searching the rest of the document too.
What follows are some sketchy ideas. Concerning syntax highlighting, I won't try to
compete with the listings package.

7.1 Spelling

Here’s a recipe to create an English spellchecker. Take the list of the 40,000 most fre-
quent words of English by Wiktionary: http://en.wiktionary.org/wiki/Wiktionary:
Frequency_lists#English. Use TgX to turn it into a file, say english.dic, whose only
content is \csname<word>@dic\endcsname for each word of the list, with <word> in lower-
case. What! you exclaim, that creates 40,000 control sequences! True. But TEX distributions
can easily do that today. Input english.dic at the beginning of your document. Then
set up X3Search as follows:

\SearchList{spelling}{%
\lowercase{\ifcsname#1l@dic\endcsname}%
#1%
\else
\red{#11}%
\fi}
{a?,b?,c?,d?,e?,f?,9?,h?,i?,3?,k?,1?,m?,
n?,0?,p?,q?,r?,s?,t?,u?,v?,w?,x?,y?,z?}
\SearchOrder{p;}

Now, for each word, XgSearch checks whether it belongs to the frequency list. If it doesn't,
it puts it in red, thus signaling a likely spelling error. It could also issue an error message,
or whatever.

Some words will never belong to that list. Then we use a simple macro to add them
beforehand:

\def\AddWord#1{\Towercase{\csname#1@dic\endcsname}}

We could also create more specific macros like \AddRegularVerb which from e.g. change
would add change, changes, changed, changing. TEX could also rewrite english.dic on
the fly so there’d be no need to respecify those words on every document. And so on and
so forth.

XgSearch user guide ® 14

Stately, plump Buck Mulligan came from the stairhead, bearing a bowl of
lather on which a mirror and a razor lay crossed. A yellow dressinggown,
ungirdled, was sustained gently behind him on the mild morning air. He
held the bowl aloft and intoned:

— Introibo ad altare Dei.

Halted, he peered down the dark winding stairs and called out coarsely:
— Come up, Kinch! Come up, you fearful jesuit!

Solemnly he came forward and mounted the round gunrest. He faced
about and blessed gravely thrice the tower, the surrounding land and the
awaking mountains. Then, catching sight of Stephen Dedalus, he bent to-
wards him and made rapid crosses in the air, gurgling in his throat and
shaking his head. Stephen Dedalus, displeased and sleepy, leaned his
arms on the top of the staircase and looked coldly at the shaking gurgling
face that blessed him, equine in its length, and at the light untonsured hair,
grained and hued like pale oak.

Buck Mulligan peeped an instant under the mirror and then covered the
bowl smartly.

— Back to barracks! he said sternly.

He added in a preacher’s tone:

— For this, O dearly beloved, is the genuine Christine: body and soul and
blood and ouns. Slow music, please. Shut your eyes, gents. One moment.
A little trouble about those white corpuscles. Silence, all.

ExampLE 19: THE WoRrDSs IN Rep DoN’T BELONG To THE Top 40,000

http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists#English
http://en.wiktionary.org/wiki/Wiktionary:Frequency_lists#English

Using a list like the frequency list is important because we want all forms of a word
to appear; i.e. organized word lists have hear and not hears, because there exists either
an algorithm or at least the user’s brain to derive hears from hear.

7.2 Word count

Another simple use of X3Search is counting words in a document. We define a case-
insensitive list with all letters as prefixes, so all words will be matched (we could add
numbers too), as we did in the previous example. Supposing we want words like don’t
to be counted as one word, then we remove the apostrophe from the word boundaries
(in case it signals a dialogue, the following space will delimit the word anyway). And we
define the search order as case-sensitive prefixes only, because we don’t need anything
else. The \shownumber macro is clear, I believe. In the first version of the text on the right
itis \1let to \relax. It’s just for fun.

The \advance on \wordcount has to be \global because there might be (hidden)
groups in the text, for instance in font-changing commands.

\newcount\wordcount

\def\shownumber{%
\raise.6\baselineskip\hbox toOpt{\hss\tiny\red{\the\wordcount}}
}

\SearchList!{wordcount}{\global\advance\wordcountl\shownumber{}}
{a?,b?,c?,d?,e?,f?,9?,h?,i?,j?,k?,17,m?,
n?,0?,p?,9?,r?,s?,t?,u?,v?,w?,x?,y?,z?}

\UndoBoundary{"'}

\SearchOrder{p;}

7.3 Syntax highlighting: TgX

At first I'd designed a colorful scheme but it was ugly, so here’s something much more
sober. We simply create an empty list in which we design a macro to add \stringed
primitive commands.

\SearchList{hilitex}{\bold{#1}}{}
\def\Add#1{%
\AddToList{hilitex}{#1}%
}

XgSearch user guide ® 15

Stately, plump Buck Mulligan came from the stairhead, bearing a bowl of
lather on which a mirror and a razor lay crossed. A yellow dressinggown,
ungirdled, was sustained gently behind him on the mild morning air. He
held the bowl aloft and intoned:

— Introibo ad altare Dei.

Halted, he peered down the dark winding stairs and called out coarsely:
— Come up, Kinch! Come up, you fearful jesuit!

Solemnly he came forward and mounted the round gunrest. He faced
about and blessed gravely thrice the tower, the surrounding land and the
awaking mountains. Then, catching sight of Stephen Dedalus, he bent to-
wards him and made rapid crosses in the air, gurgling in his throat and
shaking his head. Stephen Dedalus, displeased and sleepy, leaned his
arms on the top of the staircase and looked coldly at the shaking gurgling
face that blessed him, equine in its length, and at the light untonsured hair,
grained and hued like pale oak.

There are 158 words.

170

160 167 162 16 164 165 . 166 167 168 16
d d then covered the

Buck Mulligan peeped an instanf under thé mirror an
bowl smarti/}?.

173 174 75, 476 17, 78
— Back to barracks! he said sterrﬂy.
179 189 18182 183 184
He added in a preacher’s tone:
185 186 1 88 189 190 191 L 192 . ..193 94 19 19 19
— For this, o] deariy beloved, is the genuine Christine: bociy and soul an
205 206 207

19; 19, 200 201 202 203 20 5 208 20
blood and ouns. Slow music, please. Shut your eyes, gents. One moment.
210 _, 211 12 21 214 215 216 . 217 2
Alittle trouble about those white corpuscles. Silence, al.

The total number of words is: 218.

ExamprLE 20: COUNTING WORDS

\expandafter\Add\expandafter{\string\def}
\expandafter\Add\expandafter{\string\expandafter}
\expandafter\Add\expandafter{\string\else}
\expandafter\Add\expandafter{\string\fi}
\expandafter\Add\expandafter{\string\else}

We can't do that for prefixes (and we need them if we want e.g. to underline all user-
defined \if), because they would be \stringed and thus of category code 12, which ex-
ample 18 has shown was a trouble. So we design a macro to add words with a backslash
added beforehand. And we use it.

\def\gobble#1{}
\def\AddPrefix#1{%
\AddToList*{hilitex}{\expandafter\gobble\string\\#1?1}%

}
\AddPrefix{new} \AddPrefix{if}

We need one last thing. We want \ to be recognized as a letter, because it should be put
in bold too. But we also want it to be recognized as a string boundary. The only solution
is to make it active and let it expand to \relax (a natural string boundary) plus itself in
catcode 12 (which is not defined with \MakeBoundary and is thus a letter for XgSearch).

\catcode \|=0
\catcode "\\=13
|def\{|relax|string\}

If we pack everything into an usual macro to make verbatim text, then we obtain some-
thing along the lines of example 21. Don't forget the typewriter font for the real thrill!

The implementation section of this documentation displays a subtler kind of syntax
highlighting, viz. \def and associates put the following command in red and index it
too, except commands I don’t want to see treated as such, like temporary commands.
However, the implementation depends on CodeDoc’s macros, so I won't show it here,
although you can look at the source.

7.4 Syntax highlighting: HTML

Coloring HTML is rather easy. The most complicated part concerns word boundaries.
X3Search is used to find elements and attributes. Only case-insensitive full words need to
be searched for.

XgSearch user guide ® 16

\def\mycommand#1{%
\expandafter\myothercommand#1%

\ifwhatever
\newtoks\mytoks
\mytoks={...1}%

\else
\mytoks={...1}%

\fi

}

ExampLE 21: TEX HIGHLIGHTED

\MakeBoundary{<>/=}
\SearchList{elements}{\bold{\violet{#1}}}

{htm1,meta, head,body,span,p,div,b,hl,img}
\SearchList{attributes}{\bold{#1}}{align,class,style,src}
\SearchOrder{f;}

<and > delimit markup, so we use them to switch X3Search on and off.

\catcode "\<=13

\catcode "\>=13
\def<{\bgroup\catcode "\ '=13\catcode "\"=13\char "\<\StartSearching{}}
\def>{\egroup\char "\>}

Quoted text should not be searched, because values to attributes are simply put in blue.

Double quotes and single quotes should exclude each other.

\catcode \"=13
\newif\1ifdbbegin
\def" {%
\unless\1ifsgbegin
\ifdbbegin \egroup \char ™ \"
\else \char \" \bgroup \dbbegintrue \color{blue}\StopSearching

\fi
\fi
}
\catcode™\"'=13
\newif\ifsgbegin
\def' {%
\unless\1ifdbbegin

\ifsgbegin \egroup \char™\'
\else \char \"' \bgroup \sgbegintrue \color{blue}\StopSearching
\fi

\fi

}

src and href take links as values, usually underlined. So we do just that.

\SearchList!{1inks}{\makeTlink}{src,href}
\def\makeTink=#1{%

XgSearch user guide ® 17

XgSearch user guide ® 18

\1fx#1"
\expandafter\makedbqglink
\else
\expandafter\makesgqlink
\fi
}
\def\makedbqTlink#1" {\StopSearching="\underline{#1}"\StartSearching}
\def\makesgqlink#1l' {\StopSearching="\underline{#1}'\StartSearching}

. g q <p>
The &. . . ; character denotation is often in red. A perhaps less taxing way to express your appreciation
\catcode "\&=13 is to make a

donation &mndash;

\def {% small efforts add up </p>

\char "\& <div id='footer'><hr />
\red{#1;}% <table width='100%'>
} <tr>

<td align='left'>
Site sponsor:
TeX Users Group</td>
\catcode "\"=12 <td>
S Internet connection provided b
\catcode "\ '=12 p p y
\catcode \#=12 St Michael's College</td>

\catcode "_=12 <td align='right'>
N

Finally we turn off TgX’s special characters (quotes are made active by < and >), and we
make some useful adjustments.

\catcode "\A=12 What is CTAN?</td>
\catcode "\%=12 </tr>
\obeylines </table>
\def\par{\leavevmode\endgraf} </div>
\parindentOpt </body>
</html>

Example 22 shows the bottom of the CTAN page.

ExamrLE 22: CoLorrFuL HTML

8 Implementation

8.1 First things first
First we look for XgTEX.

These will be used to keep a constant punctuation in spite
of catcode-changing packages like babe.

We declare X3Search as a package in IXTEX.

1 \ifx\csname XeTeXrevision\endcsname\relax

2 \errmessage{You need XeTeX to run xesearch. It won't be loaded.}
3 \expandafter\endinput

4 \else

5 \expandafter\ifx\csname xs@ChangeCatcodes\endcsname\relax

6 \else

7 \expandafter\expandafter\expandafter\endinput
8 \fi
9 \fi

10 \catcode 0=11

11 \def\xs@ChangeCatcodes{),

12 \chardef\xs@questioncode=\catcode \7%
13 \chardef\xs@exclamationcode=\catcode \!9
14 \chardef\xs@commacode=\catcode™\,%

15 \chardef\xs@starcode=\catcode *}

16 \chardef\xs@semicoloncode=\catcode™\;%
17 \catcode \712

18 \catcode \!12

19 \catcode~\,12

20 \catcode *12

21 \catcode™\;12

22 }

23 \def\xs@RestoreCatcodes{},

24 \catcode \7\xs@questioncode

25 \catcode \!\xs@exclamationcode

26 \catcode ™\, \xs@commacode

27 \catcode *\xs@starcode

28 \catcode™\;\xs@semicoloncode

29 F

30 \xs@ChangeCatcodes

31 \ifdefined\ProvidesPackage

32 \def\xs@err#1{\PackageError{xesearch}{#1}{}}

XgSearch user guide ® 19

\unexpanded already exists in ConTEXt, and the meaning of
the e-TgX primitive is taken over by \normalunexpanded, so
we have to make the proper adjustment (many thanks to
Wolfgang Schuster, who signalled this to me).
\xs@contextmoduleisan empty command letto \relax when
X3Search is loaded with ConTgXt.

Some keywords, indispensable macros, and a bunch of \new
things.

XgSearch user guide ® 20

33 \ProvidesPackage{!FileName}[!FileDate!space !FileVersion!space Searching documents.]

34 \else
35 \def\MessageBreak{~~J}
36 \def\xs@err#1{},

37 \bgroup

38 \newlinechar \""J%

39 \errorcontextlines=0

40 \errmessage{xsearch error: #1}/
41 \egroup

42 by

43 \fi

44 \ifcsname xs@contextmodule\endcsname
45 \let\xs@unexpanded\normalunexpanded
46 \else

47 \let\xsO@unexpanded\unexpanded

48 \fi

49 \def\xs@end{\xs@end}

50 \def\xsQempty{}

51 \def\xs@star{*}

52 \def\xs@exclamation{!}

53 \def\xs@question{?}

54 \def\xs@starexclam{*!}

55 \def\xs@exclamstarq{!*}

56 \def\xs@words{words}

57 \def\xs@prefixes{prefixes}
58 \def\xs@suffixes{suffixes}
59 \def\xsQgobble#1{}

60 \def\xs@Lowercase#1#2{\lowercase{\def#2{#1}}}
61 \let\xs@relax\relax

62 \newcount\xs@TempCount

63 \newcount\xs@CaseSensitive
64 \newcount\xs@TempLength

65 \newcount\xs@Length

66 \newbox\xs@Box

8.2 Character classes

Basic classes: natural delimiters (spaces and primitives), left
and right delimiters (set by \MakeBoundary) and the normal
class, out of which letters and delimiters will be taken.

This is how we make boundaries. Note that if the charac-
ter has a character class of 8 or 9, we don't change it. The
interchartoks will be modified, however.

XgSearch user guide ® 21

67 \newif\ifxs@Concatenate
68 \newif\ifxs@String

69 \newif\ifxs@Affix

70 \newif\ifxs@Prefix

71 \newif\ifxs@Suffix

72 \newif\ifxs@BadWord

73 \newif\ifxs@Star

74 \newif\ifxs@Phrase

75 \newif\ifxs@Match

76 \newtoks\xs@DefToks

77 \newtoks\xs@NoReplaceToks

78 \chardef\xs@NatDel=255

79 \chardef\xs@lrDel=254

80 \chardef\xs@Classes=253

81 \chardef\xs@Classless=0

82 \XeTeXinterchartoks\xs@lrDel\xs@Classless={\xs@LearnLetter}
83 \XeTeXinterchartoks\xs@NatDel\xs@Classless={\xs@LearnLetter}
84 \XeTeXinterchartoks\xs@NatDel\xs@lrDel{\xs@EndString}

85 \xs@TempCount\xs@Classes

86 \def\xs@Delimiters{}

87 \def\xs@MakeDel#1{%

88 \ifx#1\xs@end

89 \let\xs@next\relax

90 \else

91 \let\xs@next\xs@MakeDel

92 \unless\ifnum\the\XeTeXcharclass #1=7

93 \unless\ifnum\the\XeTeXcharclass #1=8

94 \XeTeXcharclass #1=\xs@lrDel

95 \expandafter\def\expandafter\xs@Delimiters\expandafter{\xs@elimiters#1}J,
96 \fi

97 \fi

98 \fi\xs@next}
99 \xs@MakeDel\{\}.,;:!?[()]-"'"\xs@end

XgSearch user guide ® 22

100 \def\MakeBoundary#1{%

101 \xs@MakeDel#1\xs@end

102 }

103 \def\UndoBoundary#1{%

104 \xs@UndoBoundary#1\xs@end
105 }

106 \def\xs@UndoBoundary#1{%

107 \def\xsQ@temp{#11}/,

108 \ifx\xs@temp\xs@end

109 \let\xs@next\relax
110 \else
111 \ifnum\the\XeTeXcharclass #1=\xs@lrDel
112 \def\xsO@RemoveFromDelimiters##1#1##2\xsQend{%
113 \def\xs@Delimiters{##1##2}7
114 jyA
115 \expandafter\xs@RemoveFromDelimiters\xs@elimiters\xs@end
116 \fi
117 \XeTeXcharclass #1=0
118 \let\xs@next\xs@UndoBoundary
119 \fi\xs@next
120 }
This is the macro that turn a letter into a letter recording it- 121 \def\xs@Letters{}%
self. It is recursive. Each new letter is assigned a new char- 122 \def\xs@CreateLetter#1{J
acter class (from 253 downward), then it is made to start the 123 \ifx#1\xs@end
recording process after delimiters, to stop it before, and to 124 \let\xs@next\relax
add itself to \xs@String in both case or next to another let- 125 \else
ter. Before natural delimiters, however, if the word recorded 126 \expandafter\def\expandafter\xs@Letters\expandafter{\xs@Letters#1}},
up to now is part of a possible phrase, the process is not 127 \XeTeXcharclass #1=\xs@TempCount
stopped. The polyglossia patch is needed when e.g. ? is 128 \expandafter\def\csname\the\xs@TempCount Q@xstring@letter\endcsname{#11}},
not turned into a \xs@1rDe1 but keeps its character class as 129 \edef\xs@PolyglossiaPatch{¥
defined by polyglossia. 130 \xs@unexpanded{\XeTeXinterchartoks\xs@TempCount7}{%
131 \xs@unexpanded{\xdef\xs@String{\xs@String#1}\xsQEndString}’
132 \the\XeTeXinterchartoksO 71}%
133 \xs@unexpanded{\XeTeXinterchartoks\xs@TempCount8}{%

134 \xs@unexpanded{\xdef\xs@String{\xs@String#1}\xsO@EndString}/

XgSearch user guide ® 23

135 \the\XeTeXinterchartoksO 8}/

136 \xs@unexpanded{\XeTeXinterchartoks8\xs@TempCount}{%

137 \the\XeTeXinterchartoks8 0 \xs@unexpanded{\xs@StartSringl}}J,
138 jyA

139 \xs@PolyglossiaPatch

140 \XeTeXinterchartoks\xs@TempCount\xs@Classless{)

141 \xdef\xs@String{\xs@String#1}/,

142 \xs@LearnLetter}},

143 \XeTeXinterchartoks\xs@lrDel\xsQ@TempCount{%

144 \xs@StopTracing

145 \xs@StartString

146 %

147 \XeTeXinterchartoks\xs@NatDel\xs@TempCount{%

148 \xs@StopTracing

149 \xs@StartString

150 %

151 \XeTeXinterchartoks\xs@TempCount\xs@lrDel{’,

152 \xdef\xs@String{\xs@String#1}\xsQ@EndString}’

153 \XeTeXinterchartoks\xs@TempCount\xs@NatDel{%

154 \xdef\xs@String{\xs@String#1}/,

155 \ifcsname\xs@String @xs@phrases@cs\endcsname

156 \XeTeXinterchartokenstateO

157 \xdef\xs@Stack{’

158 \xs@String\noexpand\xs@end\xs@unexpanded\expandafter{\xs@Stack}/,
159 Y

160 \edef\xs@String{\xs@unexpanded\expandafter{\xs@String} }%
161 \XeTeXinterchartokenstatel

162 \else

163 \expandafter\xs@Lowercase\expandafter{\xs@String}\xs@lcString
164 \ifcsname\xs@lcString @xs@phrases@ncs\endcsname

165 \XeTeXinterchartokenstate0

166 \xdef\xs@Stack{%

167 \xs@String\noexpand\xs@end\xsQunexpanded\expandafter{\xs@Stackl}’
168 Yh

169 \edef\xs@String{\xs@unexpanded\expandafter{\xs@String} }%

This is the recursive macro which creates the \XeTeXinter-
chartoks for the new letter and all existing letter.

X3Search learns a letter when it encounters a character with
character class 0. Since \xs@CreatelLetter islocal, and since
itis often executed inside the word box (see \xs@StartString),
we record the letters thus created in \xs@PendinglLetters
and create them for good after the group.

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

203

XgSearch user guide ® 24

\XeTeXinterchartokenstatel
\else
\expandafter\expandafter\expandafter\xs@EndString
\fi
\fi
Y
\xs@TempCount\xs@Classes
\xs@MakeInterCharToks#1
\advance\xs@TempCount-1
\let\xs@next\xs@CreateLetter
\fi\xs@next
}
\def\xs@MakeInterCharToks#1{},
\ifnum\xs@TempCount=\XeTeXcharclass #1
\XeTeXinterchartoks\xs@TempCount\xs@TempCount{\xdef\xs@String{\xs@String#1}}J
\let\xs@next\relax
\else\let\xs@next\relax
\expandafter\expandafter\expandafter,
\xs@Xict\csname\the\xs@TempCount Oxstring@letter\endcsnamey
\xs@TempCount{\XeTeXcharclass #1}/
\xs@Xict#1{\XeTeXcharclass #1}\xs@TempCount
\advance\xs@TempCount-1
\def\xs@next{\xs@MakeInterCharToks#11}%
\fi\xs@next}
\def\xs@Xict#1#2#3{%
\XeTeXinterchartoks#2#3{\xdef\xs@String{\xs@String#1}}%
}
\def\xs@Pendingletters{}/,
\def\xsQ@LearnLetter#1{/,
\xs@CreateLetter#1\xs@end
\ifxs@String
\xdef\xs@PendingLetters{\xs@Pendingletters#1}%
\fi
#1}

8.3 Search lists

First we define whether there’s an ! or a * or both.

Then, after a basic check on the name of the list, we record it
and defined the macros associated with this list as the sec-
ond argument; these macros are the normal and !-marked
(‘'noreplace’) versions (both are created because there might
be an \AddToL1ist of a different type). Finally we launch the

204 \def\SearchList{%

205 \xs@ChangeCatcodes

206 \xs@StarOrExclam\xs@Search
207}

208 \def\xs@StarOrExclam#1#2#{}
209 \def\xs@temp{#2}/

210 \ifx\xs@temp\xsOstar

211 \xs@CaseSensitive2

212 \xs@Concatenatefalse

213 \else

214 \ifx\xs@temp\xs@exclamation
215 \xs@CaseSensitive0

216 \xs@Concatenatetrue

217 \else

218 \ifx\xs@temp\xs@starexclam
219 \xs@CaseSensitive2

220 \xs@Concatenatetrue

221 \else

222 \ifx\xs@temp\xs@exclamstar
223 \xs@CaseSensitive?2

224 \xs@Concatenatetrue
225 \else

226 \xs@CaseSensitive0

227 \xs@Concatenatefalse
228 \fi

229 \fi

230 \fi

231 \fi#1},

232}

233 \def\xs@Search#1#2#3{Y

234 \ifcsname#10xs@searchlist\endcsname

235 \Xs@err{%
236 “#1' already exists.\MessageBreak
237 Use \string\AddToList{#1}{<words>} to add words to it}

XgSearch user guide ® 25

word-maker on the list of words. \AddToList is equivalent
with some adjustments.

This takes each word one by one and checks and creates a
few things.

238
239
240
241
242
243
244
245

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

272

XgSearch user guide ® 26

Y
\else
\def\xs@ListName{#1}Y
\expandafter\def\csname\xs@ListName @words\endcsname{}%
\expandafter\def\csname #10@xs@searchlist\endcsname##1{#2}/,
\expandafter\def\csname #10@xs@searchlist@noreplace\endcsname##1{#2}/,
\expandafter\xs@MakeWord#3, \xs@end,’
\xs@RestoreCatcodes
\fi
}
\def\AddToList{%
\xs@ChangeCatcodes
\xs@StarOrExclam\xs@AddToList
¥
\def\xs@AddToList#1#2{%
\ifcsname#1@xs@searchlist\endcsname
\def\xs@ListName{#11}%
\expandafter\xs@MakeWord#2, \xs@end,’
\xs@RestoreCatcodes
\else
\xs@err{ #1' is not a list})
\fi
\xs@RestoreCatcodes
}
\def\xs@MakeWord#1,{%
\def\xs@TempWord{#13}%
\ifx\xs@TempWord\xs@end
\let\xs@next\relax
\else
\ifcsname\ifnum\xs@CaseSensitive=2*\fi#10@\xs@ListName\endcsname
\xs@err{You have already specified ~\ifnum\xs@CaseSensitive=2x\fi#1'},
in “\xs@ListName'. \MessageBreak You can't do it twicel),
\else
\csname#10@\xs@ListName\endcsname
\edef\xs@TempWord{#11}/,

For instance, we parse the word, to find prefixes or suffixes
or forbidden things, like control sequences. Then we sup-
press prefixes and suffixes.

Depending on case-sensitivity, we put the word in lower-
case or not, and we define a keyword to record the case-
sensitivity.

Finally, we patch the replacement texts associated with this
word or affix.

273
274
275

277
278
279
280
281
282
283
284
285
286

288
289
290
291
292
293
294
295
296
297

299
300
301
302
303
304
305
306
307

XgSearch user guide ® 27

\chardef\xs@ParseState=0
\xs@BadWordfalse
\xs@Starfalse
\xs@Prefixfalse
\xs@Suffixfalse
\xs@ParseWord#1\xs@end
\unless\ifxs@BadWord

\ifxs@Star
\xs@CaseSensitivel
\expandafter\xs@SuppressPrefix\xs@TempWord\xs@end

\fi

\ifxs@Prefix
\expandafter\xs@SuppressSuffix\xs@TempWord

\else
\ifxs@Suffix

\expandafter\xs@SuppressPrefix\xs@TempWord\xs@end
\fi

\fi

\def\xs@Phrase{}/

\ifcase\xs@CaseSensitive
\expandafter\xs@Lowercase\expandafter{\xs@TempWord}\xs@TempWord
\def\xs@cs{ncs}%
\expandafter\xs@CheckSpaces\xs@TempWord\xs@end

\or
\def\xs@cs{cs}/
\expandafter\xs@CheckSpaces\xs@TempWord\xs@end
\xs@CaseSensitiveO

\or
\def\xs@cs{cs}/
\expandafter\xs@CheckSpaces\xs@TempWord\xs@end

\fi

\ifxs@Prefix
\xs@MakePrefix
\def\xs@WordType{prefixes},
\expandafter\xs@PatchDef\csname\xs@ListName @xs@searchlist\endcsname

This is a basic finite state automaton. It starts in state 0. A
star brings it in state 1. In both o and 1, if it finds a letter
or a ? it goes in state 2. From there, only letters and a ? at
the very end of the word are allowed. Boundaries make it
crash. The distinction between stage o and stage 1 is needed
just in case the user defines the star as a boundary.

323
324
325
326
327

329
330
331
332
333
334
335
336
337
338
339
340
341
342

XgSearch user guide ® 28

\else
\ifxs@Suffix
\xs@MakeSuffix
\def\xs@WordType{suffixes}’,
\expandafter\xs@PatchDef\csname\xs@ListName Q@xs@searchlist\endcsname
\else
\def\xs@WordType{words}/
\expandafter\xs@PatchDef\csname\xs@ListName @xs@searchlist\endcsname
\fi
\fi
\fi
\fi
\let\xs@next\xs@MakeWord
\fi\xs@next
}
\def\xs@ParseWord#1{/
\def\xs@temp{#11}/,
\ifx\xs@temp\xs@end
\let\xs@next\relax
\ifxs@Suffix
\ifnum\xs@ParseState=3
\xs@err{You can't have a prefix and a suffix in the same word.\MessageBreak
“\xs@unexpanded\expandafter{\xs@TempWord}' won't be searched},
\xs@BadWordtrue
\fi
\fi
\else
\let\xs@next\xs@ParseWord
\expandafter\ifcat\noexpand#1\relax
\xs@BadChar#1{control sequences are forbiddenl,
\else
\ifcase\xs@ParseState
\chardef\xs@TempNum=\XeTeXcharclass #1
\ifx\xs@temp\xs@star
\xs@Startrue

XgSearch user guide ® 29

343 \chardef\xs@ParseState=1

344 \let\xsO@next\xs@ParseWord

345 \else

346 \ifx\xs@temp\xs@question

347 \xs@Suffixtrue

348 \chardef\xs@ParseState=2

349 \let\xs@next\xs@ParseWord

350 \else

351 \ifnum\xs@TempNum>\xs@Classes
352 \xs@BadChar#1{it's already a string delimiter}),
353 \else

354 \chardef\xs@ParseState=2
355 \ifnum\xs@TempNum=0

356 \xs@CreateLetter#1\xs@end
357 \let\xs@next\xs@ParseWord
358 \fi

359 \fi

360 \fi

361 \fi

362 %

363 \or

364 \chardef\xs@ParseState=2

365 \chardef\xs@TempNum=\XeTeXcharclass #1
366 \let\xs@next\xs@ParseWord

367 \ifx\xs@temp\xs@question

368 \xs@Suffixtrue

369 \else

370 \ifnum\xs@TempNum>\xs@Classes
371 \xs@BadChar#1{it's already a string delimiter}},
372 \else

373 \ifnum\xs@TempNum=0

374 \xs@CreateLetter#1\xs@end
375 \let\xs@next\xs@ParseWord
376 \fi

377 \fi

XgSearch user guide ® 30

378 \fi

379 %

380 \or

381 \let\xs@next\xs@ParseWord

382 \chardef\xs@TempNum=\XeTeXcharclass #1
383 \ifx\xs@temp\xs@question

384 \xs@Prefixtrue

385 \chardef\xs@ParseState=3

386 \else

387 \ifnum\xs@TempNum>\xs@Classes

388 \xs@BadChar#1{it's already a string delimiterl}}
389 \else

390 \let\xs@next\xs@ParseWord

391 \fi

392 \fi

393 \or

394 \xs@BadChar?{it's already a string delimiter}
395 \fi

396 \fi

397 \fi\xs@next

398}

This is in case we find something we don’t wantin the word. 399 \def\xs@BadChar#1#2{J,
400 \def\xsO@next##1\xs@end{}/
401 \xs@BadWordtrue
402 \xs@err{’,

403 You can't use “\noexpand#1' in ~\xs@unexpanded\expandafter{\xs@TempWord}',\MessageBreak
404 #2.\MessageBreak

405 “\xs@unexpanded\expandafter{\xs@TempWord}' won't be searched

406 jyA

407}

In case the word is a phrase, we have to know that, so we 408 \def\xs@CheckSpaces#1\xs@end{’
check spaces. In case there are some, we record wordl, then 409 \xs@@CheckSpaces#1 \xs@end
wordl word2, then wordl word2 words3, etc., as strings that 410 }

may lead to phrases and should be recognized as such when 411 \def\xs@@CheckSpaces#1 #2\xs@end{’%
X3Search is searching. 412 \def\xs@temp{#2}/,

In case the word was recognized as an affix, we add it to the
list of affixes beginning (in the case of prefixes) or ending
(in the case of suffixes) with a given letter (this is supposed
to make XgSearch faster: when X3Search scans a word, it
searches e.g. prefixes if and only if there are prefixes with
the same initial letter as the word under investigation, and
it compares it to those words only). The affix is also added
to the lists sorted by length in both orders.

413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447

XgSearch user guide ® 31

\ifx\xs@temp\xs@empty
\let\xs@next\relax
\else
\expandafter\xs@MakePhrase\xs@Phrase\xs@end#1\xs@end
\def\xs@next{\xs@@CheckSpaces#2\xs@end}/,
\fi\xs@next
}
\def\xs@MakePhrase#1\xs@end#2\xs@end{%
\ifx\xs@Phrase\xsQ@empty
\expandafter\def\csname#20xs@phrases@\xs@cs\endcsname{}/,
\edef\xs@Phrase{#2}Y,
\else
\expandafter\def\csname#1 #20@xs@phrases@\xs@cs\endcsname{}/,
\edef\xs@Phrase{#1 #2}J,
\fi
/A
\def\xs0GetFirstLetter#1#2\xs@end{%
\def\xs@FirstLetter{#1}}
}
\def\xs@MakePrefix{}
\expandafter\ifx\csname\xs@TempWord @\xs@cs @xs@prefixes\endcsname\relax
\expandafter\xsQ@GetFirstLetter\xs@TempWord\xs@end
\ifcsname xs@prefixes@\xsQ@FirstLetter @\xs@cs\endcsname
\expandafter\edef\csname xs@prefixes@\xs@FirstLetter @\xs@cs\endcsname{}
\csname xs@prefixes@\xs@FirstLetter @\xs@cs\endcsname\xs@TempWord,}/,
\def\xs@Sign{<}%
\xs@Insert{\xs@TempWord}{\csname xs@prefixes@\xs@FirstLetter @\xs@cs @longer\endcsnamel}j,
\def\xs@Sign{>}/
\xs@Insert{\xs@TempWord}{\csname xs@prefixes@\xs@FirstLetter @\xs@cs @shorter\endcsnamel}’,
\else
\expandafter\edef\csname xs@prefixes@\xs@FirstLetter @\xs@cs\endcsname{\xs@TempWord, }%
\expandafter\edef\csname xs@prefixes@\xs@FirstLetter @\xs@cs @longer\endcsname{\xs@TempWord,}/,
\expandafter\edef\csname xs@prefixes@\xs@FirstLetter @\xs@cs O@shorter\endcsname{\xs@TempWord, }%
\fi
\fi

These suppress the ? at the beginning or the end of the
word.

Here’s how we sort the list: we check each affix, and we
insert the affix to be added just before the the first affix that
is shorter or longer, depending on the order.

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

XgSearch user guide ® 32

}
\def\xs@GetLastLetter#1{%
\ifx#1\xs@end
\let\xs@next\relax
\else
\let\xs@next\xs@GetLastLetter
\def\xs@LastLetter{#1}%
\fi\xs@next
}
\def\xs@MakeSuffix{}
\expandafter\ifx\csname\xsQ@TempWord @\xs@cs Q@xs@suffixes\endcsname\relax
\expandafter\xs@GetLastLetter\xs@TempWord\xs@end
\ifcsname xs@suffixes@\xs@LastLetter @\xsQcs\endcsname
\expandafter\edef\csname xs@suffixes@\xs@LastLetter @\xs@cs\endcsname{},
\csname xs@suffixes@\xs@LastLetter @\xs@cs\endcsname\xs@TempWord,}/
\def\xs@Sign{<}},
\xs@Insert{\xs@TempWord}{\csname xs@suffixes@\xs@LastLetter @\xsQcs Q@longer\endcsnamel’
\def\xs@Sign{>}},
\xs@Insert{\xs@TempWord}{\csname xs@suffixes@\xs@LastLetter @\xs@cs @shorter\endcsnamel}
\else
\expandafter\edef\csname xs@suffixes@\xs@LastLetter @\xs@cs\endcsname{\xs@TempWord,}%
\expandafter\edef\csname xs@suffixes@\xs@LastLetter @\xs@cs @longer\endcsname{\xs@TempWord, }%
\expandafter\edef\csname xs@suffixes@\xs@LastLetter @\xs@cs @shorter\endcsname{\xs@TempWord, }/,
\fi
\fi
}
\def\xs@SuppressPrefix#1#2\xs@end{\def\xs@TempWord{#2}}
\def\xs@SuppressSuffix#17{\def\xs@TempWord{#1}}
\def\xs@CountLetter#1{/
\ifx#1\xs@end
\let\xs@next\relax
\else
\advance\xs@Lengthl
\let\xs@next\xs@CountLetter
\fi\xs@next

Finally, we make the definition of the word. First, we asso-
ciate it with the word, so we’ll know which words to modify
in case of a \StopList, and to which type it belongs (case-
sensitivity, affix or full word, !-marked or not). Then we
make both the normal replacement text and the ‘no-repla-
cement’ replacement text.

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

XgSearch user guide ® 33

}
\def\xs@SortList#1,{%
\ifx#1\xs@end
\edef\xs@templist{\xs@templist\xs@TempAffix,}%
\let\xs@next\relax
\else
\xs@LengthO
\xs@CountLetter#1\xs@end
\ifnum\xs@Length\xs@Sign\xs@AffixLength
\edef\xs@templist{\xs@templist\xs@TempAffix,#1,}/
\let\xs@next\xs@EndList

\else
\edef\xs@templist{\xs@templist#1,1}/
\let\xs@next\xs@SortList

\fi

\fi\xs@next

}

\def\xs@EndList#1\xs@end,{%

\edef\xs@templist{\xs@templist#1}J

}

\def\xs@Insert#1#2{J

\def\xsQ@TempAffix{#11}J,

\xs@LengthO

\expandafter\xs@CountLetter#1\xsQend

\chardef\xs@AffixLength\xs@Length

\def\xs@templist{}V,

\expandafter\expandafter\expandafter\xs@SortList#2\xs@end,

\expandafter\let#2\xs@templist

}

\def\xs@PatchDef#1{/

\expandafter\edef\csname\xs@ListName @words\endcsname{,
\csname\xs@ListName @words\endcsname
\xs@TempWord: : : \xs@cs: : : \xs@WordType: : : \ifxs@Concatenate!\fi:::%
Y

\expandafter\ifx\csname\xs@TempWord @\xs@cs Oxs@\xs@WordType\endcsname\relax

Stopping a list is a delicate process: we have to extract the
definition associated with the list from the words where it
appears, and it is nested in case it is not !-marked.

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

XgSearch user guide ® 34

\xs@DefToks{\xs@FinalStringl}
\else
\xs@DefToks\expandafter\expandafter\expandafter{),
\csname\xs@TempWord @\xs@cs 0xs@\xs@WordType\endcsnamely,
\fi
\expandafter\ifx\csname\xs@TempWord @\xs@cs 0xs@\xs@WordType @noreplace\endcsname\relax
\xs@NoReplaceToks{}%
\else
\xs@NoReplaceToks\expandafter\expandafter\expandafter{’
\csname\xs@TempWord @\xs@cs O@xs@\xs@WordType @noreplace\endcsnamel},
\fi
\ifxs@Concatenate
\expandafter\edef\csname\xs@TempWord @\xs@cs @xs@\xs@WordType\endcsname{\the\xs@DefToks}/,
\expandafter\edef\csname\xs@TempWord @\xs@cs 0xs@\xs@WordType @noreplace\endcsname{’,
\the\xs@NoReplaceToks
\xs@unexpanded{\expandafter#l\expandafter{\xs@String}}/,
Y
\else
\expandafter\edef\csname\xs@TempWord @\xs@cs @xs@\xs@WordType\endcsname{’,
\noexpand\expandafter\noexpand#1\noexpand\expandafter{\the\xs@DefToksl}}
%
\fi
}

\def\StopList{%

\xs@ChangeCatcodes
\xs@StopList
}

\def\xs@StopList#1{}

\xsQ@@StopList#1,\xs@end,%
\xs@RestoreCatcodes

}

\def\xs@@StopList#1,{%

\def\xs@temp{#1}%
\ifx\xs@temp\xs@end
\let\xs@next\relax

XgSearch user guide ® 35

553 \else

554 \ifcsname#10xs@searchlist\endcsname

555 \unless\ifcsname#10@xs@stoppedlist\endcsname

556 \csname#10xs@stoppedlist\endcsname

557 \expandafter\def\expandafter\xs@ToRemove\expandafter{’
558 \csname#1@xs@searchlist\endcsname

559 o

560 \expandafter\expandafter\expandaftery

561 \xs@PatchWords\csname #1@words\endcsname\xs@end::::::::::::%
562 \fi

563 \else

564 \xs@err{ #1' is not a list}%

565 \fi

566 \let\xs@next\xs@@StopList
567 \fi\xs@next

568 }
We modify the adequate replacement text: no-replace or 569 \def\xs@PatchWords#1:: :#2:: :#3:::#4:::{),
normal. 570 \def\xs@TempWord{#1}Y%
571 \ifx\xs@TempWord\xs@end
572 \let\xs@next\relax
573 \else
574 \def\xs@temp{#4}/
575 \ifx\xs@temp\xs@exclamation
576 \expandafter\expandafter\expandaftery,
577 \xs@RemoveFromNoReplace\expandafter\xs@ToRemove\csname#10#20xs@#30Cnoreplace\endcsname
578 \fi
579 \def\xs@cs{#2}%
580 \def\xs@WordType{#31}/
581 \expandafter\xs@RemoveFromDef\csname#10#20xs0@#3\endcsname
582 \let\xs@next\xs@PatchWords
583 \fi\xs@next
584 }
Removing from no-replace is rather easy, since it's nothing 585 \def\xs@RemoveFromNoReplace#1#2{%
more than: 586 \def\xs@Erase##1\expandafter#l\expandafter##2##3\xs@end{’

\expandafter\<listl-macro>\expandafter{\xs@String} 587 \def#2{##1##3}%

\expandafter\<7ist2-macro>\expandafter{\xs@String}
\expandafter\<1ist3-macro>\expandafter{\xs@String}
So we define a macro on the fly to find the definition we
want to remove. If there’s nothing left, we let this no-replace
to \relax, so this word might be removed altogether when
we evaluate what we find.
Normal replacement texts have the following structure:
\expandafter\<7istl-macro>\expandafter{
\expandafter\<7ist2-macro>\expandafter{

\Xxs@FinalString

1}

So we scan this recursively and rebuild it piecewise, remov-
ing the list that was stopped. If in the end there remains
\xs@FinalStringonly, then there’s no replacement text any-
more, and if moreover the no-replace part is equal to \re-
Tax, then there’s nothing left for that word and it shouldn’t
be tested anymore. So we let the definition associated with
this word to \relax or we remove it from affixes.

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

622

XgSearch user guide ® 36

\ifx#2\xsQempty
\let#2\relax
\fi
Yh
\expandafter\xs@Erase#2\xsQend
}
\def\xs@final{\xs@FinalString}
\def\xs@TempDef{}
\def\xsORemoveFromDef#1{}
\def\xs@TempDef{}%
\def\xs@ef{\xs@FinalString}}
\unless\ifx#1\xs@final
\expandafter\xsQ@Extract#1/
\fi
\let#1\xs@Def
\ifx#1\xs@final
\expandafter\ifx\csname\expandafter\xs@gobble\string#l@noreplace\endcsname\relax
\ifx\xs@WordType\xs@words
\let#1\relax
\else
\xs@RemoveFromAffixes
\fi
\fi
\fi
}
\def\xsQExtract\expandafter#l\expandafter#2{J,
\def\xs@temp{#13}%
\unless\ifx\xs@temp\xs@ToRemove
\edef\xs@TempDef {%
\noexpand#1,7%
\xs@unexpanded\expandafter{\xs@TempDef}/,
%
\fi
\def\xs@temp{#2}%
\ifx\xsQ@temp\xs@final

Removing an affix from a list is easy: we scan each word and
rebuild the list, removing the affix we want to deactivate.

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

XgSearch user guide ® 37

\def\xs@next{Y%
\expandafter\xs@Rebuild\xs@TempDef\xs@end, %
%
\else
\def\xs@next{Y%
\xs@Extract#2},
/A
\fi\xs@next
}
\def\xs@Rebuild#l,{%
\ifx#1\xsQend
\let\xs@next\relax
\else
\let\xs@next\xs@Rebuild
\edef\xs@Def{%
\xsQunexpanded{\expandafter#l\expandafter}y,
\noexpand{’
\xsQunexpanded\expandafter{\xs@Def},
\noexpand},
/A
\fi\xs@next
/A
\def\xsO@RemoveFromAffixes{),
\ifx\xs@WordType\xs@prefixes
\expandafter\xs@GetFirstLetter\xs@TempWord\xsQend
\let\xs@Letter\xs@FirstLetter
\else
\expandafter\xs@GetLastLetter\xs@TempWord\xs@end
\let\xs@Letter\xs@LastLetter
\fi
\def\xs@templist{}/
\expandafter\expandafter\expandaftery,
\xs@CleanList\csname xs@\xs@WordType @\xs@Letter @\xs@cs\endcsname\xs@end,
\expandafter\let\csname xs@\xs@WordType @\xs@Letter @\xs@cs\endcsname\xs@templist
\def\xs@templist{}V

8.4 Testing words

Here comes the big part: collecting words and testing them.
When a letter follows a delimiter, we reset some values and
start collecting the letters in a box...

XgSearch user guide ® 38

658 \expandafter\expandafter\expandafter,

659 \xs@CleanList\csname xs@\xs@WordType @\xs@Letter @\xs@cs @shorter\endcsname\xs®@end,?
660 \expandafter\let\csname xs@\xs@WordType @\xs@Letter @\xs@cs @shorter\endcsname\xsQ@templist
661 \def\xs@templist{}%

662 \expandafter\expandafter\expandaftery,

663 \xs@CleanList\csname xs@\xs@WordType @\xs@Letter @\xs@cs Q@longer\endcsname\xs@end,%
664 \expandafter\let\csname xs@\xs@WordType @\xs@Letter @\xs@cs Q@longer\endcsname\xsQtemplist
665 \expandafter\let\csname\xs@TempWord @\xs@cs 0xs@\xs@WordType\endcsname\relax

666 }

667 \def\xs@CleanList#1,{/

668 \def\xsQ@temp{#1}%

669 \ifx\xs@temp\xs@end

670 \let\xs@next\relax

671 \else

672 \let\xs@next\xs@CleanlList

673 \unless\ifx\xs@temp\xs@TempWord

674 \edef\xs@templist{\xs@templist#1,1}/
675 \fi

676 \fi\xs@next

677

678 \def\xs@Stack{}

679 \def\xsORemainder{}

680 \def\xs@StartString{%

681 \xs@Stringtrue

682 \let\xs@StartString\relax
683 \def\xs@String{}%

684 \def\PrefixFound{}%

685 \def\SuffixFound{}%

686 \def\AffixFound{}/,

68y \def\xs@Stack{}/

688 \def\xsORemainder{}/,

689 \xs@Phrasefalse

690 \setbox\xs@Box=\hbox\bgroup

...and when a delimiter shows up again, unless we're track-
ing a phrase, we close the box, create the unknown letters
that we’ve found in it, evaluate the word and finally output
the result of this evaluation.

And here are the tests. The F test is for case-sensitive full
words and just checks whether there is a definition for this
word in this case. If it finds anything, it puts it around the
string that already exists, i.e. either the bare word or the
word alreay surrounded by replacement texts. Hence The
bunch of \expandafters. If there’s a no-replace, we also add
it to the existing ones. \xs@relax isjust a placeholder to add
the inhibitions defined with \SearchOrder.

The f does the same thing, except it puts the word in low-
ercase before hand.

691
692
693
694
695
696
697
698
699
700
701
702
793
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

XgSearch user guide ® 39

}
\let\xs@@StartString\xs@StartString
\def\xs@EndString{¥%

\ifxs@String
\egroup
\xs@Stringfalse
\expandafter\xs@CreateLetter\xs@Pendingletters\xs@end
\gdef\xs@PendingLetters{}/

\xs@Evaluate

\xs@Restore
\xs@StartTracing
\expandafter\xs@Remainder

\fi

}

\def\xsQ@CF@Test{%

\expandafter\unless\expandafter\ifx\csname\xs@String @cs@xs@words\endcsname\relax
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandaftery,
\def?
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandaftery,
\xs@FinalString}
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter{’

\csname\xs@String Q@cs@xs@words\endcsnamel}y,

\expandafter\unless\expandafter\ifx\csname\xs@String @cs@xs@words@noreplace\endcsname\relax

\edef\xs@NoReplace{’,
\xs@unexpanded\expandafter{\xs@NoReplacel/,
\xs@unexpanded\expandafter{\csname\xs@String @cs@xs@words@noreplace\endcsnamely,
/A
\fi
\xs@Matchtrue
\xs@relax
\xs@relax
\fi
}
\def\xs@efQTest{%
\expandafter\xs@Lowercase\expandafter{\xs@String}\xs@lcString

Tests on prefixes check whether there exists a prefix list be-
ginning with the same letter as the word at stake, and in this
case run the \xs@CheckPrefixes test.

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760

XgSearch user guide ® 40

\expandafter\unless\expandafter\ifx\csname\xs@lcString @ncs@xs@words\endcsname\relax
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter,
\def?,
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter,
\xs@FinalString}
\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter{%

\csname\xs@lcString @ncs@xs@words\endcsnamely,
\expandafter\unless\expandafter\ifx\csname\xs@lcString OncsO@xs@words@noreplace\endcsname\relax
\edef\xs@NoReplace{’,
\xs@unexpanded\expandafter{\xs@NoReplacel,
\xs@unexpanded\expandafter{\csname\xs@lcString @ncs@xs@words@noreplace\endcsname},
Y
\fi
\xs@Matchtrue
\xs@relax
\xs@relax
\fi
}
\def\xs@@p@Test{’

\xs@Affixfalse

\expandafter\xs@GetFirstLetter\xs@lcString\xs@end

\ifcsname xs@prefixes@\xsQ@FirstLetter Oncs\endcsname
\let\xs@@String\xs@lcString
\def\xs@cs{ncs}/,

\let\xs@WhatNext\xs@p@WhatNext
\expandafter\expandafter\expandafter,
\xs@CheckPrefixes\csname xs@prefixes@\xs@FirstLetter @ncs\p@order\endcsname\xs@end,

\fi

\ifxs@Affix
\xs@Affixfalse
\xs@Matchtrue
\xs@relax
\xs@relax

\fi

}

Prefixes are tested one by one by creating a macro on the fly
where one delimiter is the prefix. Then we put the word at
stake before it and execute the macro, and if there’s no first
argument, then the word matches the prefix. For instance,
if the word is democracy and the prefix is demo then we test
\xs@TestPrefix democracydemo

and obviously the first argument is empty, since demo is a
delimiter.

761 \def\xsQ@C@PQTest{%

762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795

\xsQ@Affixfalse
\expandafter\xs@GetFirstLetter\xs@String\xs@end
\ifcsname xs@prefixes@\xsOFirstLetter Qcs\endcsname
\let\xs@0String\xs@String
\def\xs@cs{cs}/,
\let\xs@WhatNext\xs@P@WhatNext
\expandafter\expandafter\expandafter,
\xs@CheckPrefixes\csname xs@prefixes@\xs@FirstLetter
\fi
\ifxs@Affix
\xs@Affixfalse
\xs@Matchtrue
\xs@relax
\xs@relax
\fi
}

\def\xs@CheckPrefixes#1,{%

\def\xs@temp{#1}/,
\ifx\xs@temp\xs@end
\let\xs@next\relax
\else
\def\xs@TestPrefix##1#1##2\xs@end{’
\def\xs@temp{##11}Y,
\ifx\xs@temp\xs@empty
\xs@Affixtrue
\def\PrefixFound{#1}%
\def\AffixFound{#1}%
\let\xsO@next\xs@WhatNext

XgSearch user guide ® 41

@cs\PQ@order\endcsname\xs@end, %

\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandaftery,

\def¥%

\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandaftery,

\xs@FinalString}

\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter{’

\csname#1@\xs@cs @xs@prefixes\endcsnamel},

The tests for suffixes work along the same lines as those for
prefixes.

796
797
798
799
800

8o1
802
803
804
805
806
8oy
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

XgSearch user guide ® 42

\expandafter\unless\expandafter\ifx\csname#10\xs@cs @xs@prefixesOnoreplace\endcsname\relax
\edef\xs@NoReplace{’,
\xs@unexpanded\expandafter{\xs@NoReplacel/,
\xs@unexpanded\expandafter{\csname#1@\xs@cs @xs@prefixes@noreplace\endcsnamely,
/A
\fi
\else
\let\xs@next\xs@CheckPrefixes
\fi
%
\expandafter\xsQ@TestPrefix\xs@@String#1\xs@end
\fi\xs@next
}
\def\xs@0S@Test{%
\xs@Affixfalse
\expandafter\xs@GetLastLetter\xs@String\xs@end
\ifcsname xs@suffixes@\xs@LastLetter @cs\endcsname
\let\xs@@String\xs@String
\def\xs@cs{cs}/,
\let\xs@WhatNext\xs@S@WhatNext
\expandafter\expandafter\expandafter,
\xs@CheckSuffixes\csname xs@suffixes@\xs@LastLetter @cs\SQorder\endcsname\xs@end,%
\fi
\ifxs@Affix
\xs@Affixfalse
\xs@Matchtrue
\xs@relax
\xs@relax
\fi
}
\def\xs@0s@Test{%
\xs@Affixfalse
\expandafter\xs@GetLastLetter\xsQ@lcString\xs@end
\ifcsname xs@suffixes@\xs@LastLetter @ncs\endcsname
\let\xsQ@0String\xs@lcString

XgSearch user guide ® 43

831 \def\xs@cs{ncsl}%

832 \let\xs@WhatNext\xs@s@WhatNext

833 \expandafter\expandafter\expandafter,
834 \xs@CheckSuffixes\csname xs@suffixes@\xs@LastLetter @ncs\s@order\endcsname\xs@end,%
835 \fi

836 \ifxs@Affix

837 \xs@Affixfalse

838 \xs@Matchtrue

839 \xs@relax

840 \xs@relax

841 \fi

842 }

843 \def\xs@CheckSuffixes#1,{%
844 \def\xsQtemp{#1}Y
845 \ifx\xs@temp\xs@end

846 \let\xs@next\relax

847 \else

848 \def\xs@TestSuffix##1#1##2\xs@end{%

849 \def\xsQ@@temp{##21}7

850 \ifx\xs@temp\xs@Q@temp

851 \xs@Affixtrue

852 \def\SuffixFound{#1}/

853 \def\AffixFound{#1}J

854 \let\xs@next\xs@WhatNext

855 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter,
856 \def?

857 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter,
858 \xs@FinalString}

859 \expandafter\expandafter\expandafter\expandafter\expandafter\expandafter\expandafter,
860 b

861 \csname#10@\xs@cs @xs@suffixes\endcsnamel},

862 \expandafter\unless\expandafter\ifx\csname#10\xs@cs @xs@suffixes@noreplace\endcsname\relax
863 \edef\xs@NoReplace{’

864 \xs@unexpanded\expandafter{\xs@NoReplacel}/

865 \xs@unexpanded\expandafter{\csname#1@\xs@cs @xs@suffixes@noreplace\endcsnamely,

8.5 Search order

\SearchOrder actually defines \xs@Evaluate. First it adds
inhibitions to the tests, e.g. ‘F! ;" adds \Tet\xs@f@Test\relax
to the F test in case it is positive, then it adds the tests them-
selves, in the specified order, to \xs@Evaluate.

If the stack is not empty, it means we're dealing with a phrase;
so the evaluation is not over in case no test has succeded.
We first have to test the phrase minus the last word, then

866
867
868
869
870
871
872
873
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898

jyA
\fi
\elseY
\let\xs@next\xs@CheckSuffixes
\fi
hyA
\expandafter\xs@TestSuffix\xs@0String#1\xs@end
\fi\xs@next
I

\def\SearchOrder{/,
\xs@ChangeCatcodes
\xs@SearchOrder
}

\def\xs@SearchOrder#1{/
\def\xs@0rder{}%
\xs@@SearchOrder#1\xs@end;%
\edef\xs@Evaluate{%

\xs@unexpanded{’,
\XeTeXinterchartokenstate=0
\def\xs@NoReplace{}’
\let\xs@FinalString\xs@String
\expandafter\xs@Lowercase\expandafter{\xs@String}\xs@lcString
/A
\xs@unexpanded\expandafter{’
\xs@0rder
\ifxs@Match
\def\xs@next{%
\xs@FinalString
Y
\else
\unless\ifx\xs@Stack\xsQempty
\xs@Phrasetrue
\expandafter\xs@PopStack\xs@Stack\xs@Qend

XgSearch user guide ® 44

the phrase minus the last two words, etc.

If the word was not a phrase, and no test was successful, we
simply put the box that contains it back into the stream.

We initialize the tests.

This treats each specification in \SearchOrder and the inhi-
bitions, if any.

899
900
901
902
903
904
905
906
907

909
910

911

913
914
915

932
933

XgSearch user guide ® 45

\let\xs@next\xs@Evaluate
\else
\ifxs@Phrase
\def\xs@Stack{}’
\def\xsOnext{\xs@String\xsORestorel},
\else
\def\xsOnext{\unhbox\xs@Box\xsC@Restorel},
\fi
\fi
\fi\xs@next
hyA
/A
\let\xs@f@Test\xs@@f@Test
\let\xs@FQ@Test\xs@OFQ@Test
\let\xs@p@Test\xs@@pQ@Test
\let\xsOP@Test\xs@OP@Test
\let\xs0s@Test\xs@0s@Test
\let\xs0S@Test\xs@OSCTest
\xs@RestoreCatcodes
I
\def\xs@@SearchOrder#1#2;{%
\def\xsQtemp{#1#2}%
\ifx#1\xs@end
\let\xs@next\relax
\else
\def\xs@Inhibit{}%
\xs@MakeInhibit#2\xs@end
\expandafter\expandafter\expandafter\xs@PatchTest\csname xs@O#1@Test\endcsname#1,
\edef\xs@0rder{%
\xs@unexpanded\expandafter{\xs@0rderl}/,
\xs@unexpanded\expandafter{\csname xs@#10@Test\endcsnamel}l}’
\let\xs@next\xs@@SearchOrder
\fi\xs@next
}
\def\xsO@MakeInhibit#1{}

The evaluation ends in any case with the restoration of the
tests, in case they were inhibited. the remainder is the right
part of a discarded phrase. For instance, if XgSearch searches
for page Tayout it will investigate page properties if it
finds it, and the remainder is properties.

This is used to test phrases minus the last word on each it-

934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968

XgSearch user guide ® 46

\def\xs@temp{#13}%
\ifx#1\xsQend
\let\xs@next\relax
\else
\let\xs@next\xs@MakeInhibit
\unless\ifx\xs@temp\xs@exclamationy,
\edef\xs@Inhibit{}
\xs@unexpanded\expandafter{\xs@Inhibit
\expandafter\let\csname xs@#1@Test\endcsname\relax}/,
Y
\fi
\fi\xs@next
}
\def\xs@PatchTest#1\xs@relax#2\xsQrelax#3#4{%
\expandafter\edef\csname xsQ@@#40@Test\endcsname{%
\xs@unexpanded{#11}/,
\xs@unexpanded\expandafter{\expandafter\xs@relax\xs@Inhibit\xs@relax\fil}Y
Y
}
\def\xs@Restore{}
\xs@Matchfalse
\let\xs0fQTest\xs@@f@Test
\let\xsOFQ@Test\xs@@FQ@Test
\let\xs0p@Test\xs@Op@Test
\let\xsQ@PQ@Test\xs@OPQTest
\let\xs@s@Test\xs@As@Test
\let\xs0@SQ@Test\xs@O@SQTest
\let\xs@StartString\xs@@StartString
\edef\xs@Remainder{’
\xs@unexpanded\expandafter{\xs@NoReplacel}/,
\xs@unexpanded\expandafter{\xs@Remainder}y,
Y
\XeTeXinterchartokenstate=1
}
\def\xs@PopWord#1\xs@end#2\xs@end{’,

eration. The stack itself is built when the beginning of a
phrase is found before a natural delimiter.

To search affixes in a given order, we simply define the list
to be used in tests to be the one with this order.

969
970
971
972
973
974
975
976
977

979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000

1001

1002

1003

\def\xs@String{#2}/,

\def \xs@@PopWord#2##1\xs@end{%
\edef\xs@Remainder{##1\xsQunexpanded\expandafter{\xs@Remainderl}y,

Y
Y

\xs@@PopWord#1\xs@end

}

\def\xs@PopStack#1\xs@end#2\xs0@@end{’,
\def\xs@Stack{#2}/,
\expandafter\xs@PopWord\xs@String\xs@end#1\xs@end
}

\def\SortByLength#1{%

\def\xs@temp{#1}/,

\ifx\xs@temp\xs@star
\def\xs0AffixOrder{@shorter}y,
\let\xs@next\xs@SortByLength

\else
\def\xsQAffixOrder{@longer}’
\def\xsOnext{\xs@@SortByLength#1\xs@end}’,

\fi

\xs@nextl}%

\def\xs@SortByLength#1{},
\xs@@SortByLength#1\xs@end
}

\def\xs@@SortByLength#1{/,

\ifx#1\xs@end
\let\xs@next\relax

\else
\expandafter\let\csname #1lQorder\endcsname\xsQAffixOrder
\let\xs@next\xs@Q@SortByLength

\fi\xs@next

}

\def\DoNotSort{%

\def\xs@AffixOrder{}%

\xs@SortByLength

XgSearch user guide ® 47

Searching all affixes is done by setting the \xs@whatNext
macro to \xs@<affix>@hatNext, depending on the text be-
ing performed.

Searching only one affix is simply gobbling the remaining
ones in case of a successful test.

1004 }

1005 \def\SearchAll#1{%

1006 \xs@SearchAll#1\xs@end

1007 }

1008 \def\xs@SearchAl1#1{%

1009 \ifx#1\xs@end

1010 \let\xs@next\relax

1011 \else\let\xs@next\xs@SearchAll
1012 \if#1p%

1013 \let\xs@p@WhatNext\xs@CheckPrefixes

1014 \else

1015 \if#1P

1016 \let\xs@P@WhatNext\xs@CheckPrefixes
1017 \else

1018 \if#1s

1019 \let\xs@s@WhatNext\xs@CheckSuffixes
1020 \else

1021 \let\xs@S@WhatNext\xs@CheckSuffixes
1022 \fi

1023 \fi

1024 \fi

1025 \fi\xs@next

1026}

1027 \def\SearchOnlyOne#1{%
1028 \xs@SearchOne#1\xs@end
1029 }

1030 \def\xs@SearchOne#1{%
1031 \ifx#1\xs@end

1032 \let\xs@next\relax

1033 \else

1034 \let\xs@next\xs@SearchOne

1035 \expandafter\def\csname xs@#1@WhatNext\endcsname##1\xs@end,{}%

1036 \fi\xs@next
1037 }

XgSearch user guide ® 48

8.6 Miscellanea

For the moment, starting and stopping the search is quite
brutal.

Patching the output very simple too.

1038 \def\StopSearching{y

1039 \let\xs@StartString\relax

1040 }

1041 \def\StartSearching{’

1042 \let\xs@StartString\xs@@StartString
1043}

1044 \let\xs@01ldOutput\relax

1045 \def\PatchOutput{%

1046 \ifx\xs@0ldOutput\relax

1047 \edef\xs@PatchOutput{%

1048 \noexpand\def \noexpand\xs@01d0utput{’,
1049 \the\output

1050 Y

1051 \noexpand\output{/

1052 \noexpand\StopSearching

1053 \the\output

1054 \noexpand\StartSearching

1055 Y

1056 hyA

1057 \expandafter\xs@PatchOutput

1058 \else

1059 \xs@err{Output already patched}’
1060 \fi

1061 }

1062 \def\NormalOutput{/
1063 \ifx\xs@0ldOutput\relax

1064 \xs@err{Output has not been patchedl}/
1065 \else

1066 \expandafter\output\expandafter{y,
1067 \xs@01d0utput

1068 %

1069 \let\xs@01d0utput\relax

1070 \fi

1071 }

XgSearch user guide ® 49

As is patching the tracing.

finally we set everything back to normal, set some default
values and say goodbye.

8.7 A third party file for ConTgXt

This file is mostly due to Wolfgang Schuster.

\xs@contextmodule is used when the main file is loaded to
set the meaning of \xs@unexpanded. (ConTgXt commands
have meaningful names, so I didn’t want to rely on them

1072 \def\PatchTracing{/
1073 \def\xs@StopTracing{’

1074 \chardef\xs@tracingcommands\tracingcommands
1075 \chardef\xs@tracingmacros\tracingmacros

1076 \tracingcommandsO \tracingmacrosO\relax

1077 joA

1078 \def\xs@StartTracing{%

1079 \tracingcommands\xs@tracingcommands

1080 \tracingmacros\xs@tracingmacros

1081 }%

1082 }

1083 \def\NormalTracing{%

1084 \let\xs@StopTracing\relax

1085 \let\xs@StartTracing\relax

1086 }

1087 \NormalTracing

1088 \xs@RestoreCatcodes \catcode @=12
1089 \SearchOrder{

1090 F!fPpSs;

1091 f!PpSs;
1092 P!pSs;
1093 p!Ss;
1094 S!s;
1005 S;

1096 T

1097 \DoNotSort{pPsS}

1098 \SearchAll{pPsS}

1099 \XeTeXinterchartokenstatel
1100 \endinput

1 %D \module

2 %D [file=!FileName,
3 %D version=!FileDate,
4 %D tit1le=\CONTEXT\ User Module,

XgSearch user guide ® 50

as tests for ConTEXt, because there might exist commands
with the same names in other formats.)

5 %D subtitle=XeSearch,

6 %D author=Paul Isambert,

7 %D date=\currentdate,

8 %D copyright=Paul Isambert,

9 %D email=zappathustra@free.fr,

10 %D license=LaTeX Project Public License]

11

12 \writestatus{loading}{ConTeXt User Module / XeSearch}
13 \csname xs@contextmodule\endcsname

14 \input xesearch.sty

15 \endinput

XgSearch user guide ® 51

9 Index

\AddTolL1ist, 5, 26
\xs@AddTolL1ist, 26
\AffixFound, 11, 38, 41, 43
\xs@AffixLength, 33
\xs@AffixOrder, 47

\xs@BadChar, 30

\xs@ChangeCatcodes, 19
\xs@CheckPrefixes, 41
\xs@CheckSpaces, 30
\xs@@CheckSpaces, 30
\xs@CheckSuffixes, 43
\xs@Classes, 21
\xs@Classless, 21
\xs@CleanList, 38
\xs@commacode, 19
\xs@CountLetter, 32
\xs@CreatelLetter, 22

\xs@Def, 36, 37
\DoNotSort, 9, 47

\xs@empty, 20
\xs@end, 20
\xs@EndList, 33
\Xxs@EndString, 39
\xs@Erase, 35
\xs@err, 19, 20
\xs@Evaluate, 44
\xs@exclamation, 20
\xs@exclamationcode, 19
\xs@exclamstar, 20
\Xxs@Extract, 36

\Xxs@F@Test, 45, 46
\Xxs@@F@Test, 39
\xs@@f@Test, 39
\xs@f@Test, 45, 46
\xs@final, 36
\xs@FinalString, 44
\xs@FirstLetter, 31

\xs@GetFirstLetter, 31
\xs@GetLastLetter, 32
\xs@gobble, 20

\xs@Inhibit, 45, 46
\xs@Insert, 33

\xs@LastlLetter, 32
\xs@LearnLetter, 24
\xs@Letter, 37
\xs@Letters, 22
\xs@ListName, 26
\xs@Lowercase, 20
\xs@lrDel, 21

\MakeBoundary, 6, 22
\xs@VakeDel, 21
\xs@MakeInhibit, 45
\xs@MakeInterCharToks, 24
\xs@MakePhrase, 31
\xs@MakePrefix, 31
\xs@MakeSuffix, 32
\xs@MakeWord, 26
\MessageBreak, 20

\xs@NatDel, 21
\noexpand, 49
\NormalOutput, 11, 49
\NormalTracing, 11, 50

\xs@01dOutput, 49
\xs@0Order, 44, 45

\Xxs@P@Test, 45, 46
\xs@@P@Test, 41
\xs@@p@Test, 40
\xs@p@Test, 45, 46
\xs@P@whatNext, 48
\xs@p@whatNext, 48
\xs@ParseWord, 28
\xs@PatchDef, 33
\PatchOutput, 11, 49
\xs@PatchOutput, 49
\xs@PatchTest, 46
\PatchTracing, 11, 50
\xs@PatchWords, 35
\xs@PendinglLetters, 24, 39
\Xxs@PolyglossiaPatch, 22
\xs@PopStack, 47
\xs@PopWord, 46
\xs@@PopWord, 47
\xs@prefixes, 20
\PrefixFound, 11, 38, 41

\xs@question, 20
\xs@questioncode, 19

\xs@Rebuild, 37
\xs@relax, 20
\Xxs@Remainder, 38, 46, 47
\xs@RemoveFromAffixes, 37
\Xxs@RemoveFromDef, 36

\xs@RemoveFromDelimiters, 22
\xs@RemoveFromNoReplace, 35

\xs@Restore, 46
\xs@RestoreCatcodes, 19

XgSearch user guide ® 52

\Xxs@S@Test, 45, 46 \xs@SuppressPrefix, 32
\Xxs@@S@Test, 42 \xs@SuppressSuffix, 32
\xs@@s@Test, 42]
\xs@s@Test, 45, 46 \xs@TestPrefix, 41
\xs@S@WhatNext, 48 \xs@TestSuffix, 43
\xs@s@WhatNext, 48 \xs@tracingcommands, 50
\xs@Search, 25 \xs@tracingmacros, 50
Sl O \UndoBoundary, 6, 22
\xs@SearchAlT, 48
\SearchList, 4, 2 \xs@UndoBoundary, 22

N 7 4 25 \xs@unexpanded, 20
\xs@SearchOne, 48

\SearchOnl1yOne, 9, 48
\SearchOrder, 10, 44
\xs@SearchOrder, 44
\xs@@SearchOrder, 45
\xs@semicoloncode, 19
\SortByLength, 9, 47
\xs@SortByLength, 47
\xs@@SortBylLength, 47
\xs@SortList, 33
\xs@star, 20
\xs@starcode, 19
\xs@starexclam, 20
\xs@StarOrExclam, 25
\StartSearching, 7, 49
\Xxs@StartString, 38, 46, 49
\xs@@StartString, 39
\xs@StartTracing, 50
\StoplList, 4, 34
\xs@StopList, 34
\xs@@StoplList, 34
\StopSearching, 7, 49
\xs@StopTracing, 50
\xs@suffixes, 20
\SuffixFound, 11, 38, 43

\xs@words, 20
\xs@WordType, 27, 28, 35

\xs@Xict, 24

	Changes
	Introductory remarks
	Let's search
	What xesearch looks for and how it finds it
	(A very blunt form of) regular expressions
	Search order(s)
	Strictly identical searches
	Affixes with identical characteristics
	Different searches

	Some TeXnical matters
	Examples
	Spelling
	Word count
	Syntax highlighting: TeX
	Syntax highlighting: HTML

	Implementation
	First things first
	Character classes
	Search lists
	Testing words
	Search order
	Miscellanea
	A third party file for ConTeXt

	Index

