Asymptote: the Vector Graphics
Language

For version 2.35

symptlote

This file documents Asymptote, version 2.35.
http://asymptote.sourceforge.net
Copyright (©) 2004-14 Andy Hammerlindl, John Bowman, and Tom Prince.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Lesser General Public License (see the file LICENSE in
the top-level source directory).

http://asymptote.sourceforge.net

Table of Contents

1 Description.............. 1
2 Installation................, 3
2.1 UNIX binary distributions........... ..., 3
2.2 MacOS X binary distributions.............. ... oL 3
2.3 Microsoft Windows.ouvurniii e 3
24 Configuringooviiii i 4
2.5 Search paths i 6
2.6 Compiling from UNIX source..........c.ooiiiiiiiiiiiiiiean.. 6
2.7 Editing modes 7
2.8 Subversion (SVN) 8
2.9 Uninstall. 8

3 Tutorial......... 9
3.1 Drawing in batch mode.......... 9
3.2 Drawing in interactive mode.......... i i 9
3.3 Figure size. ... 10
3.4 Labels ... 11
3.5 Paths. ..o 11

4 Drawing commands 14
Al AW . e 14
7 1 16
0 B ¢) o T 18
4.4 Jabel. ... 18

5 Beziercurves........... 22
6 Programming................... 24
6.1 Data types. ...covni 24
6.2 Pathsand guides......... ... i i 31
6.3 Pens. ... e 38
6.4 Transforms.o 46
6.5 Frames and pictures............ooiiiiiiii 47
6.6 Files. ... 53
6.7 Variable initializers....... 55
6.8 SEIUCTUTES . oottt e 57
6.9 OPerators. .. .ottt 61
6.9.1 Arithmetic & logical operators............................ 61

6.9.2 Self & prefix operators ..., 62

6.9.3 User-defined operators.............cooiiiiiiiiiiiia.. 62

6.10 Implicit scaling 63
6.11 Functions......... ... 63

6.11.1 Default argumentsc.ooiiiiiiiiiiiiii. 65

6.11.2 Named arguments.c.oeeiiuieeineennieennn. 65

6.11.3 Rest arguments......... ..o 66

6.11.4 Mathematical functionso il 68
6.12 ATTAYS . .t 69

6.12.1 SHCES - v ve et 76
6.13 CastS . oot 7
6.14 Import.o e 78
B.15 SBaAtIC. vttt 80

LaTeX usage., 83

Base modules.................. 88
8.1 pladm... .o 88
8.2 simplexX 88
8.3 Math. . 88
8.4 Anterpolate........ ...t 89
8.0 BEOMELIY .ottt 89
8.6 trembling.......... ... 89
TR - < T 90
8.8 PALLOIIS ... 90
8.0 MATKRETS ..ttt e 90
810 BrEe . et 92
8.11 binarytree......... ..o 92
.12 drawtreet 93
.13 SYZYgY i 93
8.14 feymman 93
8.15 roundedpatho 93
816 animation...........iiiiiiiiiii 93
LT embed. e 94
I8 Slide. .t e 94
.19 MetaPoST . e 94
8.20 UNICOAE .. v vttt ittt e 95
.21 latinl ... 95
8.22 babel. ... e 95
8.23 labelpath....... ... 95
8.24 labelpath3....... ...t 96
8.25 annotate 96
820 CAD . i 96
8.27 graph. 96
8.28 palette.o 126
8.29 BRTEE . 131
B.30 0D et 144
8.31 graph3 144

8.32 grid3 ... 148

ii

8.833 S0LAdS .t e 149
.34 tUDE. . 150
8.30 floWChartttt 151
8.36 COMETOUT ..ottt 153
8.7 COMEOUT . . 158
8.38 slopefieldcouiiiiiiii 158
B30 0dE ..t 159
9 Command-line options....................... 160
10 Interactive mode............................ 164
11 Graphical User Interface................... 166
11.1 GUIinstallation ... 166
11.2 0 GUIL USAZE . o oottt e e e 166
12 PostScript to Asymptote..................... 167
13 Help...... 168
14 Debugger................ ... 169
15 Acknowledgments........................... 170

iii

Chapter 1: Description 1

1 Description

Asymptote is a powerful descriptive vector graphics language that provides a mathematical
coordinate-based framework for technical drawing. Labels and equations are typeset with
LaTeX, for overall document consistency, yielding the same high-quality level of typesetting
that LaTeX provides for scientific text. By default it produces PostScript output, but it
can also generate any format that the ImageMagick package can produce.

A major advantage of Asymptote over other graphics packages is that it is a high-level
programming language, as opposed to just a graphics program: it can therefore exploit the
best features of the script (command-driven) and graphical-user-interface (GUI) methods
for producing figures. The rudimentary GUI xasy included with the package allows one
to move script-generated objects around. To make Asymptote accessible to the average
user, this GUI is currently being developed into a full-fledged interface that can generate
objects directly. However, the script portion of the language is now ready for general use by
users who are willing to learn a few simple Asymptote graphics commands (see Chapter 4
[Drawing commands|, page 14).

Asymptote is mathematically oriented (e.g. one can use complex multiplication to rotate
a vector) and uses LaTeX to do the typesetting of labels. This is an important feature for
scientific applications. It was inspired by an earlier drawing program (with a weaker syntax
and capabilities) called MetaPost.

The Asymptote vector graphics language provides:

e a standard for typesetting mathematical figures, just as TEX/LaTeX is the de-facto
standard for typesetting equations.

e LaTeX typesetting of labels, for overall document consistency;

e the ability to generate and embed 3D vector PRC graphics within PDF files;

e a natural coordinate-based framework for technical drawing, inspired by MetaPost,
with a much cleaner, powerful C++-like programming syntax;

e compilation of figures into virtual machine code for speed, without sacrificing portabil-
ity;

e the power of a script-based language coupled to the convenience of a GUI,;

e customization using its own C++-like graphics programming language;

e sensible defaults for graphical features, with the ability to override;

e a high-level mathematically oriented interface to the PostScript language for vector
graphics, including affine transforms and complex variables;

e functions that can create new (anonymous) functions;

o deferred drawing that uses the simplex method to solve overall size constraint issues

between fixed-sized objects (labels and arrowheads) and objects that should scale with
figure size;

Many of the features of Asymptote are written in the Asymptote language itself. While
the stock version of Asymptote is designed for mathematics typesetting needs, one can write
Asymptote modules that tailor it to specific applications. A scientific graphing module has
already been written (see Section 8.27 [graph], page 96). Examples of Asymptote code and
output, including animations, are available at

Chapter 1: Description 2

http://asymptote.sourceforge.net/gallery/.

Links to many external resources, including an excellent user-written Asymptote tutorial
can be found at

http://asymptote.sourceforge.net/links.html.
A quick reference card for Asymptote is available at

http://asymptote.sourceforge.net/asyRefCard.pdf.

http://asymptote.sourceforge.net/gallery/
http://asymptote.sourceforge.net/links.html
http://asymptote.sourceforge.net/asyRefCard.pdf

Chapter 2: Installation 3

2 Installation

After following the instructions for your specific distribution, please see also Section 2.4

[Configuring], page 4.

We recommend subscribing to new release announcements at
http://freecode.com/projects/asy

Users may also wish to monitor the Asymptote forum:
http://sourceforge.net/p/asymptote/discussion/409349

2.1 UNIX binary distributions

We release both tgz and RPM binary distributions of Asymptote. The root user can install

the Linux 1386 tgz distribution of version x.xx of Asymptote with the commands:

tar -C / -zxf asymptote-x.xx.i386.tgz

texhash

The texhash command, which installs LaTeX style files, is optional. The executable

file will be /usr/local/bin/asy) and example code will be installed by default in

/usr/share/doc/asymptote/examples.

Fedora users can easily install the most recent version of Asymptote with the command

yum --enablerepo=rawhide install asymptote

To install the latest version of Asymptote on a Debian-based distribution (e.g. Ubuntu,

Mepis, Linspire) follow the instructions for compiling from UNIX source (see Section 2.6

[Compiling from UNIX source], page 6). Alternatively, Debian users can install one of

Hubert Chan’s prebuilt Asymptote binaries from
http://ftp.debian.org/debian/pool/main/a/asymptote

2.2 MacOS X binary distributions

MacOS X users can either compile the UNIX source code (see Section 2.6 [Compiling from
UNIX source|, page 6) or install the Asymptote binary available at

http://www.macports.org/

Note that many Mac0S X (and FreeBSD) systems lack the GNU readline library. For full
interactive functionality, GNU readline version 4.3 or later must be installed.

2.3 Microsoft Windows

Users of the Microsoft Windows operating system can install the self-extracting Asymptote
executable asymptote-x.xx-setup.exe, where x.xx denotes the latest version.

A working TEX implementation (such as the one available at http://www.miktex.org)
will be required to typeset labels. You will also need to install GPL Ghostscript version
9.14 or later from http://downloads.ghostscript.com/public.

To view the default PostScript output, you can install the program gsview available
from http://www.cs.wisc.edu/ ghost/gsview/. A better (and free) PostScript viewer
available at http://psview.sourceforge.net/ (which in particular works properly in
interactive mode) unfortunately currently requires some manual configuration. Specifically,
if version x.xx of psview is extracted to the directory c:\Program Files one needs to put

http://freecode.com/projects/asy
http://sourceforge.net/p/asymptote/discussion/409349
http://ftp.debian.org/debian/pool/main/a/asymptote
http://www.macports.org/
http://www.miktex.org
http://downloads.ghostscript.com/public
http://www.cs.wisc.edu/~ghost/gsview/
http://psview.sourceforge.net/

Chapter 2: Installation 4

import settings;
psviewer="c:\Program Files\psview-x.xx\psv.exe";

in the optional Asymptote configuration file; see [configuration file], page 162).
The ImageMagick package from
http://www.imagemagick.org/script/binary-releases.php

is required to support output formats other than EPS, PDF, SVG, and PNG (see [convert],
page 162). The Python 2 interpreter from http://www.python.org is only required if you
wish to try out the graphical user interface (see Chapter 11 [GUI], page 166).

Example code will be installed by default in the examples subdirectory of the installation
directory (by default, C:\Program Files\Asymptote).

2.4 Configuring

In interactive mode, or when given the -V option (the default when running Asymptote
on a single file under MSDOS), Asymptote will automatically invoke the PostScript viewer
gv (under UNIX) or gsview (under MSDOS to display graphical output. These defaults may
be overridden with the configuration variable psviewer. The PostScript viewer should
be capable of automatically redrawing whenever the output file is updated. The default
UNIX PostScript viewer gv supports this (via a SIGHUP signal). Version gv-3.6.3 or later
(from http://ftp.gnu.org/gnu/gv/) is required for interactive mode to work properly.
Users of ggv will need to enable Watch file under Edit/Postscript Viewer Preferences.
Users of gsview will need to enable Options/Auto Redisplay (however, under MSDOS it is
still necessary to click on the gsview window; under UNIX one must manually redisplay by
pressing the r key). A better (and free) multiplatform alternative to gsview is psview (see
[psview], page 3).

Configuration variables are most easily set as Asymptote variables in an optional con-

figuration file config.asy see [configuration file], page 162). Here are the default values of
several important configuration variables under UNIX:
import settings;
psviewer="gv";
pdfviewer="acroread";
gS="gS";
Under MSDOS, the (installation-dependent) default values of these configuration variables are
determined automatically from the Microsoft Windows registry. Viewer settings (such as
psviewer and pdfviewer) can be set to the string cmd to request the application normally
associated with the corresponding file type.

For PDF format output, the gs setting specifies the location of the PostScript-to-PDF
processor Ghostscript, available from http://downloads.ghostscript.com/public.

The setting pdfviewer specifies the location of the PDF viewer. On UNIX systems, to
support automatic document reloading in Adobe Reader, we recommend copying the file
reload.js from the Asymptote system directory (by default, /usr/share/asymptote un-
der UNIX to "/.adobe/Acrobat/x.x/JavaScripts/, where x.x represents the appropriate
Adobe Reader version number. The automatic document reload feature must then be ex-
plicitly enabled by putting

http://www.imagemagick.org/script/binary-releases.php
http://www.python.org
http://ftp.gnu.org/gnu/gv/
http://downloads.ghostscript.com/public

Chapter 2: Installation 5

import settings;
pdfreload=true;
pdfreloadOptions="-tempFile";

in the Asymptote configuration file. This reload feature is not useful under MSDOS since the
document cannot be updated anyway on that operating system until it is first closed by
Adobe Reader.

The configuration variable dir can be used to adjust the search path (see Section 2.5
[Search paths|, page 6).

By default, Asymptote attempts to center the figure on the page, assuming that the paper
typeis letter. The default paper type may be changed to a4 with the configuration variable
papertype. Alignment to other paper sizes can be obtained by setting the configuration
variables paperwidth and paperheight.

The following configuration variables normally do not require adjustment:

config
texpath
texcommand
dvips
dvisvgm
libgs
convert
display
animate

Warnings (such as "unbounded" and "offaxis") may be enabled or disabled with the
functions

warn(string s);
nowarn(string s);

or by directly modifying the string array settings.suppress, which lists all disabled warn-
ings.

Configuration variables may also be set or overwritten with a command-line option:
asy -psviewer=gsview -V venn

Alternatively, system environment versions of the above configuration variables may be
set in the conventional way. The corresponding environment variable name is obtained by
converting the configuration variable name to upper case and prepending ASYMPTOTE_: for
example, to set the environment variable

ASYMPTOTE_PSVIEWER="C:\Program Files\Ghostgum\gsview\gsview32.exe";
under Microsoft Windows XP:

1. Click on the Start button;

2. Right-click on My Computer;

3. Choose View system information;
4. Click the Advanced tab;
5

Click the Environment Variables button.

Chapter 2: Installation 6

2.5 Search paths

In looking for Asymptote system files, asy will search the following paths, in the order
listed:

1. The current directory;

2. A list of one or more directories specified by the configuration variable dir or environ-
ment variable ASYMPTOTE_DIR (separated by : under UNIX and ; under MSDOS);

3. The directory specified by the environment variable ASYMPTOTE_HOME; if this variable is
not set, the directory .asy in the user’s home directory (%USERPROFILE}\.asy under
MSDOS) is used;

4. The Asymptote system directory (by default, /usr/share/asymptote under UNIX and
C:\Program Files\Asymptote under MSDOS).

2.6 Compiling from UNIX source

To compile and install a UNIX executable from the source release asymptote-x.xx.src.tgz
in the subdirectory x.xx under

http://sourceforge.net/projects/asymptote/files/
execute the commands:

gunzip asymptote-x.xx.src.tgz
tar -xf asymptote-x.xx.src.tar
cd asymptote-x.xx

By default the system version of the Boehm garbage collector will be used; if it is old we
recommend first putting http://hboehm.info/gc/gc_source/gec-7.4.2.tar.gz http://
www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.4.2.tar.gz in the Asymptote
source directory.

On UNIX platforms (other than MacOS X), we recommend using version 2.8.1 of the
freeglut library. To compile freeglut, download

http://prdownloads.sourceforge.net/freeglut/freeglut-2.8.1.tar.gz
and type (as the root user):

gunzip freeglut-2.8.1.tar.gz
tar -xf freeglut-2.8.1.tar
cd freeglut-2.8.1
./configure --prefix=/usr
make install

cd ..

Then compile Asymptote with the commands

./configure
make all
make install

Be sure to use GNU make (on non-GNU systems this command may be called gmake). To
build the documentation, you may need to install the texinfo-tex package. If you get
errors from a broken texinfo or pdftex installation, simply put

http://asymptote.sourceforge.net/asymptote.pdf

http://sourceforge.net/projects/asymptote/files/
http://hboehm.info/gc/gc_source/gc-7.4.2.tar.gz
http://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.4.2.tar.gz
http://www.ivmaisoft.com/_bin/atomic_ops/libatomic_ops-7.4.2.tar.gz
http://prdownloads.sourceforge.net/freeglut/freeglut-2.8.1.tar.gz
http://asymptote.sourceforge.net/asymptote.pdf

Chapter 2: Installation 7

in the directory doc and repeat the command make all.

For a (default) system-wide installation, the last command should be done as the root user.
To install without root privileges, change the ./configure command to

./configure --prefix=$HOME/asymptote

One can disable use of the Boehm garbage collector by configuring with ./configure
--disable-gc. For a list of other configuration options, say ./configure --help. For
example, one can tell configure to look for header files and libraries in nonstandard locations:

./configure CFLAGS=-I/opt/usr/include LDFLAGS=-L/opt/usr/lib

If you are compiling Asymptote with gcc, you will need a relatively recent version (e.g.
3.4.4 or later). For full interactive functionality, you will need version 4.3 or later of the GNU
readline library. The file gcc3.3.2curses.patch in the patches directory can be used
to patch the broken curses.h header file (or a local copy thereof in the current directory) on
some AIX and IRIX systems.

The FFTW library is only required if you want Asymptote to be able to take Fourier
transforms of data (say, to compute an audio power spectrum). The GSL library is only
required if you require the special functions that it supports.

If you don’t want to install Asymptote system wide, just make sure the compiled binary
asy and GUI script xasy are in your path and set the configuration variable dir to point
to the directory base (in the top level directory of the Asymptote source code).

2.7 Editing modes

Users of emacs can edit Asymptote code with the mode asy-mode, after enabling it by
putting the following lines in their .emacs initialization file, replacing ASYDIR with the loca-
tion of the Asymptote system directory (by default, /usr/share/asymptote or C: \Program
Files\Asymptote under MSDOS):

(add-to-1list ’load-path "ASYDIR")

(autoload ’asy-mode "asy-mode.el" "Asymptote major mode." t)

(autoload ’lasy-mode "asy-mode.el" "hybrid Asymptote/Latex major mode." t)
(autoload ’asy-insinuate-latex "asy-mode.el" "Asymptote insinuate LaTeX." t)
(add-to-list ’auto-mode-alist ’("\\.asy$" . asy-mode))

Particularly useful key bindings in this mode are C-c C-c, which compiles and displays the
current buffer, and the key binding C-c ?, which shows the available function prototypes
for the command at the cursor. For full functionality you should also install the Apache
Software Foundation package two-mode-mode:

http://www.dedasys.com/freesoftware/files/two-mode-mode.el

Once installed, you can use the hybrid mode lasy-mode to edit a LaTeX file containing
embedded Asymptote code (see Chapter 7 [LaTeX usage], page 83). This mode can be en-
abled within latex-mode with the key sequence M-x lasy-mode <RET>. On UNIX systems,
additional keywords will be generated from all asy files in the space-separated list of direc-
tories specified by the environment variable ASYMPTOTE_SITEDIR. Further documentation
of asy-mode is available within emacs by pressing the sequence keys C-h £ asy-mode <RET>.

Fans of vim can customize vim for Asymptote with

http://www.dedasys.com/freesoftware/files/two-mode-mode.el

Chapter 2: Installation 8

cp /usr/share/asymptote/asy.vim ~/.vim/syntax/asy.vim
and add the following to their ~/.vimrc file:

augroup filetypedetect
au BufNewFile,BufRead *.asy setf asy
augroup END
filetype plugin on
If any of these directories or files don’t exist, just create them. To set vim up to run the
current asymptote script using :make just add to “/.vim/ftplugin/asy.vim:

setlocal makeprg=asy\ %
setlocal errorformat=Yf:\ %1l.%c:\ %m

Syntax highlighting support for the KDE editor Kate can be enabled by running
asy-kate.sh in the /usr/share/asymptote directory and putting the generated
asymptote.xml file in “/.kde/share/apps/katepart/syntax/.

2.8 Subversion (SVN)

The following commands are needed to install the latest development version of Asymptote
using Subversion:

svn co http://svn.code.sf.net/p/asymptote/code/trunk/asymptote
cd asymptote

./autogen.sh

./configure

make all

make install

To compile without optimization, use the command make CFLAGS=-g.

2.9 Uninstall

To uninstall an Linux 1386 binary distribution, use the commands

tar -zxvf asymptote-x.xx.i386.tgz | xargs --replace=}, rm /%
texhash

To uninstall all Asymptote files installed from a source distribution, use the command

make uninstall

Chapter 3: Tutorial 9

3 Tutorial

3.1 Drawing in batch mode

To draw a line from coordinate (0,0) to coordinate (100,100), create a text file test.asy
containing

draw((0,0)--(100,100));
Then execute the command
asy -V test

Alternatively, MSDOS users can drag and drop test.asy onto the Desktop asy icon (or make
Asymptote the default application for the extension asy).

This method, known as batch mode, outputs a PostScript file test.eps. If you prefer PDF
output, use the command line

asy -V -f pdf test

In either case, the -V option opens up a viewer window so you can immediately view the
result:

Here, the —— connector joins the two points (0,0) and (100,100) with a line segment.

3.2 Drawing in interactive mode

Another method is interactive mode, where Asymptote reads individual commands as they
are entered by the user. To try this out, enter Asymptote’s interactive mode by clicking on
the Asymptote icon or typing the command asy. Then type

draw((0,0)--(100,100));

followed by Enter, to obtain the above image. At this point you can type further draw
commands, which will be added to the displayed figure, erase to clear the canvas,

input test;

to execute all of the commands contained in the file test.asy, or quit to exit interactive
mode. You can use the arrow keys in interactive mode to edit previous lines. The tab key
will automatically complete unambiguous words; otherwise, hitting tab again will show the
possible choices. Further commands specific to interactive mode are described in Chapter 10
[Interactive mode], page 164.

Chapter 3: Tutorial 10

3.3 Figure size

In Asymptote, coordinates like (0,0) and (100,100), called pairs, are expressed in
PostScript "big points" (1 bp = 1/72 inch) and the default line width is 0.5bp. However,
it is often inconvenient to work directly in PostScript coordinates. The next example
produces identical output to the previous example, by scaling the line (0,0)--(1,1) to fit
a rectangle of width 100.5 bp and height 100.5 bp (the extra 0.5bp accounts for the line
width):

size(100.5,100.5);
draw((0,0)--(1,1));

One can also specify the size in pt (1 pt =1/72.27 inch), cm, mm, or inches. Two nonzero
size arguments (or a single size argument) restrict the size in both directions, preserving
the aspect ratio. If 0 is given as a size argument, no restriction is made in that direction;
the overall scaling will be determined by the other direction (see [size|, page 48):

size(0,100.5);
draw((0,0)--(2,1) ,Arrow) ;

To connect several points and create a cyclic path, use the cycle keyword:

size(3cm);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);

Chapter 3: Tutorial 11

For convenience, the path (0,0)--(1,0)--(1,1)--(0,1)--cycle may be replaced with
the predefined variable unitsquare, or equivalently, box ((0,0),(1,1)).

To make the user coordinates represent multiples of exactly 1cm:

unitsize(lcm);
draw(unitsquare) ;

3.4 Labels

Adding labels is easy in Asymptote; one specifies the label as a double-quoted LaTeX string,
a coordinate, and an optional alignment direction:

size(3cm);
draw(unitsquare) ;
label("A", (0,0),SW);
label ("B", (1,0),SE);
label("C",(1,1),NE);
label("D", (0,1) ,NW);

A B

Asymptote uses the standard compass directions E=(1,0), N=(0,1), NE=unit (N+E), and
ENE=unit (E+NE), etc., which along with the directions up, down, right, and left are
defined as pairs in the Asymptote base module plain (a user who has a local variable
named E may access the compass direction E by prefixing it with the name of the module
where it is defined: plain.E).

3.5 Paths

This example draws a path that approximates a quarter circle, terminated with an arrow-
head:

size(100,0);
draw((1,0){up}..{1left}(0,1),Arrow);

Chapter 3: Tutorial 12

Here the directions up and left in braces specify the incoming and outgoing directions at
the points (1,0) and (0,1), respectively.

In general, a path is specified as a list of points (or other paths) interconnected with —-,
which denotes a straight line segment, or .., which denotes a cubic spline (see Chapter 5
[Bezier curves|, page 22). Specifying a final ..cycle creates a cyclic path that connects
smoothly back to the initial node, as in this approximation (accurate to within 0.06%) of a
unit circle:

path unitcircle=E..N..W..S..cycle;

An Asymptote path, being connected, is equivalent to a Postscript subpath. The =~ bi-
nary operator, which requests that the pen be moved (without drawing or affecting endpoint
curvatures) from the final point of the left-hand path to the initial point of the right-hand
path, may be used to group several Asymptote paths into a path[] array (equivalent to a
PostScript path):

size(0,100);

path unitcircle=E..N..W..S..cycle;

path g=scale(2)*unitcircle;
filldraw(unitcircle”"g,evenodd+yellow,black) ;

The PostScript even-odd fill rule here specifies that only the region bounded between the
two unit circles is filled (see [fillrule], page 42). In this example, the same effect can be
achieved by using the default zero winding number fill rule, if one is careful to alternate the
orientation of the paths:

filldraw(unitcircle”"reverse(g),yellow,black) ;

The "~ operator is used by the box(triple, triple) function in the module three.asy
to construct the edges of a cube unitbox without retracing steps (see Section 8.29 [three],
page 131):

import three;

Chapter 3: Tutorial 13

currentprojection=orthographic(5,4,2,center=true) ;

size(5cm);
size3(3cm,5cm,8cm) ;

draw(unitbox) ;
dot (unitbox,red);

label ("0", (0,0,0) ,NW);

label("(1,0,0)",(1,0,0),3);
label("(0,1,0)",(0,1,0),E);
label("(0,0,1)",(0,0,1),2);

(0,0,1)

| =

(170 (0,1,0)

See section Section 8.27 [graph], page 96 (or the online Asymptote gallery and external
links posted at http://asymptote . sourceforge .net) for further examples, including
two-dimensional and interactive three-dimensional scientific graphs. Additional examples
have been posted by Philippe Ivaldi at http://www.piprime.fr/asymptote. Excellent
user-written Asymptote tutorials are also available:

http://www.artofproblemsolving.com/Wiki/index.php/Asymptote:_Basics

http://math.uchicago.edu/"cstaats/Charles_Staats_III/Notes_and_papers_files/
asymptote_tutorial.pdf

http://asymptote.sourceforge.net
http://www.piprime.fr/asymptote
http://www.artofproblemsolving.com/Wiki/index.php/Asymptote:_Basics
http://math.uchicago.edu/~cstaats/Charles_Staats_III/Notes_and_papers_files/asymptote_tutorial.pdf
http://math.uchicago.edu/~cstaats/Charles_Staats_III/Notes_and_papers_files/asymptote_tutorial.pdf

Chapter 4: Drawing commands 14

4 Drawing commands

All of Asymptote’s graphical capabilities are based on four primitive commands. The three
PostScript drawing commands draw, £i11l, and clip add objects to a picture in the order
in which they are executed, with the most recently drawn object appearing on top. The
labeling command label can be used to add text labels and external EPS images, which
will appear on top of the PostScript objects (since this is normally what one wants), but
again in the relative order in which they were executed. After drawing objects on a picture,
the picture can be output with the shipout function (see [shipout], page 48).

If you wish to draw PostScript objects on top of labels (or verbatim tex commands;
see [tex], page 52), the layer command may be used to start a new PostScript/LaTeX
layer:

void layer(picture pic=currentpicture);

The layer function gives one full control over the order in which objects are drawn.
Layers are drawn sequentially, with the most recent layer appearing on top. Within each
layer, labels, images, and verbatim tex commands are always drawn after the PostScript
objects in that layer.

While some of these drawing commands take many options, they all have sensible default
values (for example, the picture argument defaults to currentpicture).

4.1 draw

void draw(picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen,
arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
Label legend="", marker marker=nomarker);

Draw the path g on the picture pic using pen p for drawing, with optional drawing attributes
(Label L, explicit label alignment align, arrows and bars arrow and bar, margins margin,
legend, and markers marker). Only one parameter, the path, is required. For convenience,
the arguments arrow and bar may be specified in either order. The argument legend is a
Label to use in constructing an optional legend entry.

Bars are useful for indicating dimensions. The possible values of bar are None, BeginBar,
EndBar (or equivalently Bar), and Bars (which draws a bar at both ends of the path). Each
of these bar specifiers (except for None) will accept an optional real argument that denotes
the length of the bar in PostScript coordinates. The default bar length is barsize (pen).

The possible values of arrow are None, Blank (which draws no arrows or path),
BeginArrow, MidArrow, EndArrow (or equivalently Arrow), and Arrows (which draws an
arrow at both ends of the path). All of the arrow specifiers except for None and Blank may
be given the optional arguments arrowhead arrowhead (one of the predefined arrowhead
styles DefaultHead, SimpleHead, HookHead, TeXHead), real size (arrowhead size in
PostScript coordinates), real angle (arrowhead angle in degrees), filltype filltype
(one of FillDraw, Fill, NoFill, UnFill, Draw) and (except for MidArrow and Arrows)
a real position (in the sense of point(path p, real t)) along the path where the tip
of the arrow should be placed. The default arrowhead size when drawn with a pen p is
arrowsize(p). There are also arrow versions with slightly modified default values of size

Chapter 4: Drawing commands 15

and angle suitable for curved arrows: BeginArcArrow, EndArcArrow (or equivalently
ArcArrow), MidArcArrow, and ArcArrows.

Margins can be used to shrink the visible portion of a path by labelmargin(p)
to avoid overlap with other drawn objects. Typical values of margin are NoMargin,
BeginMargin, EndMargin (or equivalently Margin), and Margins (which leaves a
margin at both ends of the path). One may use Margin(real begin, real end)
to specify the size of the beginning and ending margin, respectively, in multiples of
the units labelmargin(p) used for aligning labels. Alternatively, BeginPenMargin,
EndPenMargin (or equivalently PenMargin), PenMargins, PenMargin(real begin, real
end) specify a margin in units of the pen line width, taking account of the pen line
width when drawing the path or arrow. For example, use DotMargin, an abbreviation
for PenMargin(-0.5*dotfactor,0.5*dotfactor), to draw from the usual beginning
point just up to the boundary of an end dot of width dotfactor*linewidth(p).
The qualifiers BeginDotMargin, EndDotMargin, and DotMargins work similarly. The
qualifier TrueMargin(real begin, real end) allows one to specify a margin directly in
PostScript units, independent of the pen line width.

The use of arrows, bars, and margins is illustrated by the examples Pythagoras.asy,
sqrtx01.asy, and triads.asy.

The legend for a picture pic can be fit and aligned to a frame with the routine:

frame legend(picture pic=currentpicture, int perline=1,
real xmargin=legendmargin, real ymargin=xmargin,
real linelength=legendlinelength,
real hskip=legendhskip, real vskip=legendvskip,
real maxwidth=0, real maxheight=0,
bool hstretch=false, bool vstretch=false, pen p=currentpen);

Here xmargin and ymargin specify the surrounding x and y margins, perline specifies
the number of entries per line (default 1; 0 means choose this number automatically),
linelength specifies the length of the path lines, hskip and vskip specify the line skip
(as a multiple of the legend entry size), maxwidth and maxheight specify optional upper
limits on the width and height of the resulting legend (0 means unlimited), hstretch and
vstretch allow the legend to stretch horizontally or vertically, and p specifies the pen used
to draw the bounding box. The legend frame can then be added and aligned about a point
on a picture dest using add or attach (see [add about], page 51).

To draw a dot, simply draw a path containing a single point. The dot command defined
in the module plain draws a dot having a diameter equal to an explicit pen line width or
the default line width magnified by dotfactor (6 by default), using the specified filltype
(see [filltype], page 49):
void dot(picture pic=currentpicture, pair z, pen p=currentpen,

filltype filltype=Fill);
void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
string format=defaultformat, pen p=currentpen, filltype filltype=Fill);
void dot(picture pic=currentpicture, Label[] L=new Label[], pair[] z,
align align=NoAlign, string format=defaultformat, pen p=currentpen,
filltype filltype=Fill)
void dot(picture pic=currentpicture, Label L, pen p=currentpen,

Chapter 4: Drawing commands 16

filltype filltype=Fill);

If the variable Label is given as the Label argument to the second routine, the format
argument will be used to format a string based on the dot location (here defaultformat
is "$%.4g$"). The third routine draws a dot at every point of a pair array z. One can also
draw a dot at every node of a path:

void dot(picture pic=currentpicture, Label[] L=new Labell[],
path g, align align=RightSide, string format=defaultformat,
pen p=currentpen, filltype filltype=Fill);

See [pathmarkers|, page 106 and Section 8.9 [markers|, page 90 for more general methods
for marking path nodes.

To draw a fixed-sized object (in PostScript coordinates) about the user coordinate
origin, use the routine

void draw(pair origin, picture pic=currentpicture, Label L="", path g,
align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
arrowbar bar=None, margin margin=NoMargin, Label legend="",
marker marker=nomarker) ;

4.2 fill

void fill(picture pic=currentpicture, path g, pen p=currentpen);
Fill the interior region bounded by the cyclic path g on the picture pic, using the pen p.

There is also a convenient filldraw command, which fills the path and then draws in
the boundary. One can specify separate pens for each operation:

void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
pen drawpen=currentpen) ;

This fixed-size version of £ill allows one to fill an object described in PostScript
coordinates about the user coordinate origin:

void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);
This is just a convenient abbreviation for the commands:
picture opic;

fill(opic,g,p);
add(pic,opic,origin);

The routine
void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
fills the region exterior to the path g, out to the current boundary of picture pic.

Lattice gradient shading varying smoothly over a two-dimensional array of pens p, using
fill rule £illrule, can be produced with

void latticeshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[][] p)

If stroke=true, the region filled is the same as the region that would be drawn by
draw(pic,g,fillrulet+zerowinding); in this case the path g need not be cyclic. The
pens in p must belong to the same color space. One can use the functions rgb(pen)

Chapter 4: Drawing commands 17

or cmyk(pen) to promote pens to a higher color space, as illustrated in the example file
latticeshading.asy.

Axial gradient shading varying smoothly from pena to penb in the direction of the line
segment a--b can be achieved with

void axialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, bool extenda=true,
pen penb, pair b, bool extendb=true);

The boolean parameters extenda and extendb indicate whether the shading should extend
beyond the axis endpoints a and b.

Radial gradient shading varying smoothly from pena on the circle with center a and
radius ra to penb on the circle with center b and radius rb is similar:

void radialshade(picture pic=currentpicture, path g, bool stroke=false,
pen pena, pair a, real ra, bool extenda=true,
pen penb, pair b, real rb, bool extendb=true);

The boolean parameters extenda and extendb indicate whether the shading should extend
beyond the radii a and b. Illustrations of radial shading are provided in the example files
shade.asy, ring.asy, and shadestroke.asy.

Gouraud shading using fill rule fillrule and the vertex colors in the pen array p on a
triangular lattice defined by the vertices z and edge flags edges is implemented with

void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[] p, pair[] z,
int[] edges);

void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, penl[] p, int[] edges);

In the second form, the elements of z are taken to be successive nodes of path g. The pens
in p must belong to the same color space. Illustrations of Gouraud shading are provided
in the example file Gouraud.asy and in the solid geometry module solids.asy. The edge
flags used in Gouraud shading are documented here:

http: //partners . adobe . com/public/developer/en/ps/sdk/TN5600 .
SmoothShading.pdf.

Tensor product shading using fill rule fillrule on patches bounded by the n cyclic
paths of length 4 in path array b, using the vertex colors specified in the n x 4 pen array p
and internal control points in the n x 4 array z, is implemented with

void tensorshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, pen[][] p, path[] b=g,
pair[]1[] z=new pair([][]);
If the array z is empty, Coons shading, in which the color control points are calculated
automatically, is used. The pens in p must belong to the same color space. A simpler
interface for the case of a single patch (n = 1) is also available:
void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
pen fillrule=currentpen, pen[] p, path b=g,
pair[] z=new pair([]);
One can also smoothly shade the regions between consecutive paths of a sequence using
a given array of pens:

http://partners.adobe.com/public/developer/en/ps/sdk/TN5600.SmoothShading.pdf
http://partners.adobe.com/public/developer/en/ps/sdk/TN5600.SmoothShading.pdf

Chapter 4: Drawing commands 18

void draw(picture pic=currentpicture, pen fillrule=currentpen, path[] g,
penl] p);

Tllustrations of tensor product and Coons shading are provided in the example files

tensor.asy, Coons.asy, BezierSurface.asy, and rainbow.asy.

More general shading possibilities are available using TEX engines that produce PDF
output (see [texengines], page 162): the routine

void functionshade(picture pic=currentpicture, path[] g, bool stroke=false,
pen fillrule=currentpen, string shader);

shades on picture pic the interior of path g according to fill rule fillrule using the
PostScript calculator routine specified by the string shader; this routine takes 2 argu-
ments, each in [0,1], and returns colors(fillrule).length color components. Function
shading is illustrated in the example functionshading.asy.

The following routine uses evenodd clipping together with the =~ operator to unfill a
region:

void unfill (picture pic=currentpicture, path g);

4.3 clip

void clip(picture pic=currentpicture, path g, stroke=false,
pen fillrule=currentpen);

Clip the current contents of picture pic to the region bounded by the path g, using fill rule
fillrule (see [fillrule], page 42). If stroke=true, the clipped portion is the same as the
region that would be drawn with draw(pic,g,fillrule+zerowinding); in this case the
path g need not be cyclic. For an illustration of picture clipping, see the first example in
Chapter 7 [LaTeX usage], page 83.

4.4 label

void label(picture pic=currentpicture, Label L, pair position,
align align=NoAlign, pen p=currentpen, filltype filltype=NoFill)

Draw Label L on picture pic using pen p. If align is NoAlign, the label will be centered
at user coordinate position; otherwise it will be aligned in the direction of align and
displaced from position by the PostScript offset align*labelmargin(p). The constant
Align can be used to align the bottom-left corner of the label at position. The Label L
can either be a string or the structure obtained by calling one of the functions

Label Label(string s="", pair position, align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(string s="", align align=NoAlign,

pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(Label L, pair position, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
Label Label(Label L, align align=NoAlign,

pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);

The text of a Label can be scaled, slanted, rotated, or shifted by multiplying it on
the left by an affine transform (see Section 6.4 [Transforms|, page 46). For example,

Chapter 4: Drawing commands 19

rotate(45)*xscale(2)*L first scales L in the z direction and then rotates it counter-
clockwise by 45 degrees. The final position of a Label can also be shifted by a PostScript
coordinate translation: shift(10,0)*L. An explicit pen specified within the Label over-
rides other pen arguments. The embed argument determines how the Label should transform
with the embedding picture:

Shift only shift with embedding picture;
Rotate only shift and rotate with embedding picture (default);

Rotate(pair z)
rotate with (picture-transformed) vector z.

Slant only shift, rotate, slant, and reflect with embedding picture;
Scale shift, rotate, slant, reflect, and scale with embedding picture.

To add a label to a path, use

void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
pen p=currentpen, filltype filltype=NoFill);

By default the label will be positioned at the midpoint of the path. An alternative
label position (in the sense of point(path p, real t)) may be specified as a real value
for position in constructing the Label. The position Relative(real) specifies a location
relative to the total arclength of the path. These convenient abbreviations are predefined:

position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(1);

Path labels are aligned in the direction align, which may be specified as an absolute
compass direction (pair) or a direction Relative(pair) measured relative to a north axis
in the local direction of the path. For convenience LeftSide, Center, and RightSide are
defined as Relative (W), Relative((0,0)), and Relative(E), respectively. Multiplying
LeftSide and RightSide on the left by a real scaling factor will move the label further
away from or closer to the path.

A label with a fixed-size arrow of length arrowlength pointing to b from direction dir
can be produced with the routine

void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
real length=arrowlength, align align=NoAlign,
pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin) ;

If no alignment is specified (either in the Label or as an explicit argument), the optional
Label will be aligned in the direction dir, using margin margin.

The function string graphic(string name, string options="") returns a string that
can be used to include an encapsulated PostScript (EPS) file. Here, name is the name
of the file to include and options is a string containing a comma-separated list of op-
tional bounding box (bb=11x 11y urx ury), width (width=value), height (height=value),
rotation (angle=value), scaling (scale=factor), clipping (clip=bool), and draft mode
(draft=bool) parameters. The layer () function can be used to force future objects to be
drawn on top of the included image:

Chapter 4: Drawing commands 20

label(graphic("file.eps","width=1cm"), (0,0) ,NE);
layer();

The string baseline(string s, string template="\strut") function can be used to
enlarge the bounding box of labels to match a given template, so that their baselines will
be typeset on a horizontal line. See Pythagoras.asy for an example.

One can prevent labels from overwriting one another with the overwrite pen attribute
(see [overwrite|, page 45).

The structure object defined in plain_Label.asy allows Labels and frames to be
treated in a uniform manner. A group of objects may be packed together into single frame
with the routine

frame pack(pair align=2S ... object inset[]);

To draw or fill a box (or ellipse or other path) around a Label and return the bounding
object, use one of the routines

object draw(picture pic=currentpicture, Label L, envelope e,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

object draw(picture pic=currentpicture, Label L, envelope e, pair position,
real xmargin=0, real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

Here envelope is a boundary-drawing routine such as box, roundbox, or ellipse defined
in plain_boxes.asy (see [envelope], page 47).

The function path[] texpath(Label L) returns the path array that TEX would fill to
draw the Label L.

The string minipage(string s, width=100pt) function can be used to format string
s into a paragraph of width width. This example uses minipage, clip, and graphic to
produce a CD label:

Chapter 4: Drawing commands

size(11.7cm,11.7cm);

asy(nativeformat () ,"logo");

fill(unitcircle”"(scale(2/11.7)*unitcircle),
evenodd+rgb (124/255,205/255,124/255)) ;

label(scale(1l.1)*minipage(

"\centering\scriptsize \textbf{\LARGE {\tt Asymptote}\\

\smallskip

\small The Vector Graphics Language}\\

\smallskip

\textsc{Andy Hammerlindl, John Bowman, and Tom Prince}

http://asymptote.sourceforge.net\\

" 8cm), (0,0.6));

label(graphic("logo."+nativeformat(),"height=7cm"), (0,-0.22));

clip(unitcircle”"(scale(2/11.7)*unitcircle),evenodd);

21

Chapter 5: Bezier curves 22

5 Bezier curves

Each interior node of a cubic spline may be given a direction prefix or suffix {dir}: the
direction of the pair dir specifies the direction of the incoming or outgoing tangent, respec-
tively, to the curve at that node. Exterior nodes may be given direction specifiers only on
their interior side.

A cubic spline between the node z,, with postcontrol point ¢y, and the node z;, with
precontrol point ¢, is computed as the Bezier curve

(1 —1)320 + 3t(1 — t)%co + 3t*(1 — t)ey + 320 0<t < 1.

As illustrated in the diagram below, the third-order midpoint (ms) constructed from
two endpoints zg and z; and two control points ¢y and ¢y, is the point corresponding to
t = 1/2 on the Bezier curve formed by the quadruple (zy, ¢o, ¢1, z1). This allows one to
recursively construct the desired curve, by using the newly extracted third-order midpoint
as an endpoint and the respective second- and first-order midpoints as control points:

Here mg, m; and msy are the first-order midpoints, ms; and m, are the second-order
midpoints, and ms is the third-order midpoint. The curve is then constructed by recursively
applying the algorithm to (zo, mg, ms, ms) and (ms, my, ma, 21).

In fact, an analogous property holds for points located at any fraction ¢ in [0, 1] of each
segment, not just for midpoints (t = 1/2).

The Bezier curve constructed in this manner has the following properties:

e [t is entirely contained in the convex hull of the given four points.
e [t starts heading from the first endpoint to the first control point and finishes heading
from the second control point to the second endpoint.

The user can specify explicit control points between two nodes like this:
draw((0,0)..controls (0,100) and (100,100)..(100,0));

However, it is usually more convenient to just use the .. operator, which tells Asymptote
to choose its own control points using the algorithms described in Donald Knuth’s mono-

graph, The MetaFontbook, Chapter 14. The user can still customize the guide (or path)
by specifying direction, tension, and curl values.

Chapter 5: Bezier curves 23

The higher the tension, the straighter the curve is, and the more it approximates a
straight line. One can change the spline tension from its default value of 1 to any real value
greater than or equal to 0.75 (cf. John D. Hobby, Discrete and Computational Geometry
1, 1986):
draw((100,0)..tension 2 ..(100,100)..(0,100));
draw((100,0)..tension 3 and 2 ..(100,100)..(0,100));
draw((100,0)..tension atleast 2 ..(100,100)..(0,100));

In these examples there is a space between 2 and ... This is needed as 2. is interpreted
as a numerical constant.

The curl parameter specifies the curvature at the endpoints of a path (0 means straight;
the default value of 1 means approximately circular):
draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));

The MetaPost ... path connector, which requests, when possible, an inflection-free
curve confined to a triangle defined by the endpoints and directions, is implemented in
Asymptote as the convenient abbreviation :: for ..tension atleast 1 .. (the ellipsis ...
is used in Asymptote to indicate a variable number of arguments; see Section 6.11.3 [Rest
arguments|, page 66). For example, compare

draw((0,0){up}.. (100,25){right}. . (200,0){down});

with

draw((0,0){up}::(100,25){right}::(200,0){down}) ;

o Y

The --- connector is an abbreviation for ..tension atleast infinity.. and the &
connector concatenates two paths, after first stripping off the last node of the first path
(which normally should coincide with the first node of the second path).

Chapter 6: Programming 24

6 Programming

Here is a short introductory example to the Asymptote programming language that high-
lights the similarity of its control structures with those of C, C++, and Java:

// This is a comment.

// Declaration: Declare x to be a real variable;
real x;

// Assignment: Assign the real variable x the value 1.
x=1.0;

// Conditional: Test if x equals 1 or not.
if(x == 1.0) {

write("x equals 1.0");
} else {

write("x is not equal to 1.0");

¥

// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
write(i);

¥

Asymptote supports while, do, break, and continue statements just as in C/C++. It
also supports the Java-style shorthand for iterating over all elements of an array:

// Iterate over an array

int[] array={1,1,2,3,5};

for(int k : array) {
write(k);

}

In addition, it supports many features beyond the ones found in those languages.

6.1 Data types
Asymptote supports the following data types (in addition to user-defined types):

void The void type is used only by functions that take or return no arguments.

bool a boolean type that can only take on the values true or false. For example:
bool b=true;
defines a boolean variable b and initializes it to the value true. If no initializer
is given:
bool b;

the value false is assumed.

Chapter 6:

bool3

int

real

pair

Programming 25

an extended boolean type that can take on the values true, default, or false.
A bool3 type can be cast to or from a bool. The default initializer for bool3 is
default.

an integer type; if no initializer is given, the implicit value 0 is assumed. The
minimum allowed value of an integer is intMin and the maximum value is
intMax.

a real number; this should be set to the highest-precision native floating-point
type on the architecture. The implicit initializer for reals is 0.0. Real numbers
have precision realEpsilon, with realDigits significant digits. The smallest
positive real number is realMin and the largest positive real number is realMax.
The variable inf and function bool isnan(real x) are useful when floating-
point exceptions are masked with the -mask command-line option (the default
in interactive mode).

complex number, that is, an ordered pair of real components (x,y). The real
and imaginary parts of a pair z can read as z.x and z.y. We say that x and y
are virtual members of the data element pair; they cannot be directly modified,
however. The implicit initializer for pairs is (0.0,0.0).
There are a number of ways to take the complex conjugate of a pair:

pair z=(3,4);

z=(z.%,-2.y);

z=z.x-I*z.y;

z=conj(z);

Here I is the pair (0,1). A number of built-in functions are defined for pairs:

pair conj(pair z)
returns the conjugate of z;

real length(pair z)
returns the complex modulus |z| of its argument z. For example,
pair z=(3,4);
length(z);
returns the result 5. A synonym for length(pair) is abs(pair);

real angle(pair z, bool warn=true)
returns the angle of z in radians in the interval [-pi,pi] or 0 if warn
is false and z=(0,0) (rather than producing an error);

real degrees(pair z, bool warn=true)
returns the angle of z in degrees in the interval [0,360) or O if warn
is false and z=(0,0) (rather than producing an error);

pair unit(pair z)
returns a unit vector in the direction of the pair z;

pair expi(real angle)
returns a unit vector in the direction angle measured in radians;

pair dir(real degrees)
returns a unit vector in the direction degrees measured in degrees;

Chapter 6: Programming 26

triple

real xpart(pair z)
returns z.x;

real ypart(pair z)
returns z.y;

pair realmult(pair z, pair w)

returns the element-by-element product (z.x*w.x,z.y*w.y);
real dot(explicit pair z, explicit pair w)

returns the dot product z.x*w.x+z.y*w.y;

real cross(explicit pair z, explicit pair w)
returns the 2D scalar product z.x*w.y-z.y*w.x;

real orient(pair a, pair b, pair c);

returns a positive (negative) value if a--b--c--cycle is oriented
counterclockwise (clockwise) or zero if all three points are colinear.
Equivalently, a positive (negative) value is returned if c lies to the
left (right) of the line through a and b or zero if c lies on this line.
The value returned can be expressed in terms of the 2D scalar cross
product as cross(a-c,b-c), which is the determinant

la.x a.y 1|

[b.x b.y 1|

lc.x c.y 1]

real incircle(pair a, pair b, pair c, pair d);

returns a positive (negative) value if d lies inside (outside) the circle
passing through the counterclockwise-oriented points a,b, c or zero
if d lies on the this circle. The value returned is the determinant
la.x a.y a.x"2+a.y"2 1|

[b.x b.y b.x"2+b.y"2 1]

lc.x c.y c.x"2+c.y"2 1|

ld.x d.y d.x"2+d.y"2 1|

pair minbound(pair z, pair w)
returns (min(z.x,w.x) ,min(z.y,w.y));

pair maxbound(pair z, pair w)
returns (max(z.x,w.x) ,max(z.y,w.y)).

an ordered triple of real components (x,y,z) used for three-dimensional draw-
ings. The respective components of a triple v can read as v.x, v.y, and v.z.
The implicit initializer for triples is (0.0,0.0,0.0).

Here are the built-in functions for triples:

real length(triple v)
returns the length |v| of the vector wv. A synonym for
length(triple) is abs(triple);

real polar(triple v, bool warn=true)

returns the colatitude of v measured from the z axis in radians or
0 if warn is false and v=0 (rather than producing an error);

Chapter 6: Programming 27

string

real azimuth(triple v, bool warn=true)
returns the longitude of v measured from the x axis in radians or 0
if warn is false and v.x=v.y=0 (rather than producing an error);

real colatitude(triple v, bool warn=true)
returns the colatitude of v measured from the z axis in degrees or
0 if warn is false and v=0 (rather than producing an error);

real latitude(triple v, bool warn=true)
returns the latitude of v measured from the xy plane in degrees or
0 if warn is false and v=0 (rather than producing an error);

real longitude(triple v, bool warn=true)
returns the longitude of v measured from the x axis in degrees or 0
if warn is false and v.x=v.y=0 (rather than producing an error);

triple unit(triple v)
returns a unit triple in the direction of the triple v;

triple expi(real polar, real azimuth)
returns a unit triple in the direction (polar,azimuth) measured
in radians;

triple dir(real colatitude, real longitude)
returns a unit triple in the direction (colatitude,longitude)
measured in degrees;

real xpart(triple v)
returns v.x;

real ypart(triple v)
returns v.y;

real zpart(triple v)
returns v.z;

real dot(triple u, triple v)
returns the dot product u.x*v.x+u.y*v.y+u.z*v.z;

triple cross(triple u, triple v)
returns the cross product
(0. y*V.Z2-U.2Z*%V.y,U. Z¥V.X~U.X*V.Z,U.X¥V.J-V.X*U.J);

triple minbound(triple u, triple v)
returns (min(u.x,v.x),minCu.y,v.y) ,min(u.z,v.z));

triple maxbound(triple u, triple v)
returns (max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)).
a character string, implemented using the STL string class.

Strings delimited by double quotes (") are subject to the following mappings
to allow the use of double quotes in TEX (e.g. for using the babel package, see
Section 8.22 [babel|, page 95):

e \" maps to "

Chapter 6: Programming 28

e \\ maps to \\
Strings delimited by single quotes (’) have the same mappings as character
strings in ANSI C:

e \’ maps to’

e \" maps to "

e \? maps to ?

e \\ maps to backslash

e \a maps to alert

e \b maps to backspace

e \f maps to form feed

e \n maps to newline

e \r maps to carriage return

e \t maps to tab

e \v maps to vertical tab

e \0-\377 map to corresponding octal byte

e \x0-\xFF map to corresponding hexadecimal byte
The implicit initializer for strings is the empty string "". Strings may be con-

catenated with the + operator. In the following string functions, position 0
denotes the start of the string:

int length(string s)
returns the length of the string s;

int find(string s, string t, int pos=0)
returns the position of the first occurrence of string t in string s at
or after position pos, or -1 if t is not a substring of s;

int rfind(string s, string t, int pos=-1)
returns the position of the last occurrence of string t in string s at
or before position pos (if pos=-1, at the end of the string s), or -1
if t is not a substring of s;

string insert(string s, int pos, string t)
returns the string formed by inserting string t at position pos in s;

string erase(string s, int pos, int n)
returns the string formed by erasing the string of length n (if n=-1,
to the end of the string s) at position pos in s;

string substr(string s, int pos, int n=-1)
returns the substring of s starting at position pos and of length n
(if n=-1, until the end of the string s);

string reverse(string s)
returns the string formed by reversing string s;

string replace(string s, string before, string after)
returns a string with all occurrences of the string before in the
string s changed to the string after;

Chapter 6: Programming 29

string replace(string s, string[][] table)
returns a string constructed by translating in string s all
occurrences of the string before in an array table of string pairs
{before,after} to the corresponding string after;

string[] split(string s, string delimiter="")
returns an array of strings obtained by splitting s into substrings
delimited by delimiter (an empty delimiter signifies a space, but
with duplicate delimiters discarded);

string format(string s, int n, string locale="")
returns a string containing n formatted according to the C-style
format string s using locale locale (or the current locale if an
empty string is specified);

string format(string s=defaultformat, string s=defaultseparator,

real x, string locale="")
returns a string containing x formatted according to the C-style
format string s using locale locale (or the current locale if an
empty string is specified), following the behaviour of the C func-
tion fprintf), except that only one data field is allowed, trailing
zeros are removed by default (unless # is specified), and (if the for-
mat string specifies math mode) TEX is used to typeset scientific
notation using the defaultseparator="\!\times\!";;

int hex(string s);
casts a hexidecimal string s to an integer;

int ascii(string s);
returns the ASCII code for the first character of string s;

string string(real x, int digits=realDigits)
casts x to a string using precision digits and the C locale;

string locale(string s="")
sets the locale to the given string, if nonempty, and returns the
current locale;

string time(string format="%a %b %d %T %Z %Y")
returns the current time formatted by the ANSI C routine strftime
according to the string format using the current locale. Thus

time();
time ("%a %b %d %H:%M:%S %hZ %Y");

are equivalent ways of returning the current time in the default
format used by the UNIX date command;

int seconds(string t="", string format="")
returns the time measured in seconds after the Epoch (Thu Jan
01 00:00:00 UTC 1970) as determined by the ANSI C routine
strptime according to the string format using the current locale,
or the current time if t is the empty string. Note that the "%Z"

Chapter 6: Programming 30

extension to the POSIX strptime specification is ignored by the
current GNU C Library. If an error occurs, the value -1 is returned.
Here are some examples:

seconds("Mar 02 11:12:36 AM PST 2007","%b %d %r PST %Y");
seconds (time ("%b %d %r %z %Y"™),"%b %d %r %z %Y");

seconds (time ("%b %d %r %Z %Y"),"%b %d %r "+time("%Z")+" %Y");
1+ (seconds()-seconds("Jan 1","%b %d"))/(24%60%*60) ;

The last example returns today’s ordinal date, measured from the
beginning of the year.

string time(int seconds, string format="%a %b %d AT %Z %Y")
returns the time corresponding to seconds seconds after the Epoch
(Thu Jan 01 00:00:00 UTC 1970) formatted by the ANSI C routine
strftime according to the string format using the current locale.
For example, to return the date corresponding to 24 hours ago:

time (seconds () -24*60%60) ;

int system(string s)
int system(string([] s)
if the setting safe is false, call the arbitrary system command s;

void asy(string format, bool overwrite=false ... stringl[] s)
conditionally process each file name in array s in a new envi-
ronment, using format format, overwriting the output file only if
overwrite is true;

void abort(string s="")
aborts execution (with a non-zero return code in batch mode); if
string s is nonempty, a diagnostic message constructed from the
source file, line number, and s is printed;

void assert(bool b, string s="")
aborts execution with an error message constructed from s if
b=false;

void exit ()
exits (with a zero error return code in batch mode);

void sleep(int seconds)
pauses for the given number of seconds;

void usleep(int microseconds)
pauses for the given number of microseconds;

void beep()
produces a beep on the console;

As in C/C++, complicated types may be abbreviated with typedef (see the example in
Section 6.11 [Functions|, page 63).

Chapter 6: Programming 31

6.2 Paths and guides

path a cubic spline resolved into a fixed path. The implicit initializer for paths is
nullpath.

For example, the routine circle(pair c, real r), which returns a Bezier curve
approximating a circle of radius r centered on c, is based on unitcircle (see
[unitcircle], page 12):

path circle(pair c, real r)

{

return shift(c)*scale(r)*unitcircle;

¥

If high accuracy is needed, a true circle may be produced with the routine
Circle defined in the module graph.asy:

import graph;

path Circle(pair c, real r, int n=nCircle);

A circular arc consistent with circle centered on ¢ with radius r from anglel
to angle?2 degrees, drawing counterclockwise if angle2 >= anglel, can be con-
structed with

path arc(pair c, real r, real anglel, real angle2);
One may also specify the direction explicitly:
path arc(pair c, real r, real anglel, real angle2, bool direction);

Here the direction can be specified as CCW (counter-clockwise) or CW (clock-
wise). For convenience, an arc centered at c¢ from pair z1 to z2 (assuming
|z2-c|=|z1-c|) in the may also be constructed with
path arc(pair c, explicit pair zl, explicit pair z2,
bool direction=CCW)
If high accuracy is needed, true arcs may be produced with routines in the
module graph.asy that produce Bezier curves with n control points:
import graph;
path Arc(pair c, real r, real anglel, real angle2, bool direction,
int n=nCircle);
path Arc(pair c, real r, real anglel, real angle2, int n=nCircle);
path Arc(pair c, explicit pair zl, explicit pair z2,
bool direction=CCW, int n=nCircle);
An ellipse can be drawn with the routine

path ellipse(pair c, real a, real b)
{

return shift(c)*scale(a,b)*unitcircle;

}
A brace can be constructed between pairs a and b with
path brace(pair a, pair b, real amplitude=bracedefaultratio*length(b-a));

This example illustrates the use of all five guide connectors discussed in
Chapter 3 [Tutorial], page 9 and Chapter 5 [Bezier curves|, page 22:

Chapter 6: Programming 32

size(300,0);
pair[] z=new pair[10];

z[0]=(0,100); z[1]1=(50,0); z[2]=(180,0);

for(int n=3; n <= 9; ++n)
z[n]=z[n-3]+(200,0);

path p=z[0]..z[1]---z[2]: :{up}z[3]
&z[3]..z[4]--z[5]: :{up}z[6]
&z[6]::z[7]1---z[8]..{up}z[9];
draw(p,grey+linewidth (4mm)) ;

dot(z);

Here are some useful functions for paths:

int length(path p);
This is the number of (linear or cubic) segments in path p. If p is
cyclic, this is the same as the number of nodes in p.

int size(path p);
This is the number of nodes in the path p. If p is cyclic, this is the
same as length(p).

bool cyclic(path p);
returns true iff path p is cyclic.

bool straight(path p, int i);
returns true iff the segment of path p between node i and node
i+1 is straight.

bool piecewisestraight (path p)
returns true iff the path p is piecewise straight.

pair point(path p, int t);
If p is cyclic, return the coordinates of node t mod length(p).
Otherwise, return the coordinates of node t, unless t < 0 (in
which case point (0) is returned) or t > length(p) (in which case
point (length(p)) is returned).

pair point(path p, real t);
This returns the coordinates of the point between node floor (t)
and floor(t)+1 corresponding to the cubic spline parameter

Chapter 6: Programming 33

t-floor(t) (see Chapter 5 [Bezier curves|, page 22). If t lies
outside the range [0,length(p)], it is first reduced modulo
length(p) in the case where p is cyclic or else converted to the
corresponding endpoint of p.

pair dir(path p, int t, int sign=0, bool normalize=true);
If sign < 0, return the direction (as a pair) of the incoming tangent
to path p at node t; if sign > 0, return the direction of the outgoing
tangent. If sign=0, the mean of these two directions is returned.

pair dir(path p, real t, bool normalize=true) ;
returns the direction of the tangent to path p at the point between
node floor(t) and floor (t)+1 corresponding to the cubic spline
parameter t-floor(t) (see Chapter 5 [Bezier curves], page 22).

pair dir(path p)
returns dir(p,length(p)).

pair dir(path p, path q)
returns unit(dir(p)+dir(q)).

pair accel(path p, int t, int sign=0);
If sign < 0, return the acceleration of the incoming path p at node
t; if sign > 0, return the acceleration of the outgoing path. If
sign=0, the mean of these two accelerations is returned.

pair accel(path p, real t);
returns the acceleration of the path p at the point t.

real radius(path p, real t);
returns the radius of curvature of the path p at the point t.

pair precontrol(path p, int t);
returns the precontrol point of p at node t.

pair precontrol(path p, real t);
returns the effective precontrol point of p at parameter t.

pair postcontrol(path p, int t);
returns the postcontrol point of p at node t.

pair postcontrol(path p, real t);
returns the effective postcontrol point of p at parameter t.

real arclength(path p);
returns the length (in user coordinates) of the piecewise linear or
cubic curve that path p represents.

real arctime(path p, real L);
returns the path "time", a real number between 0 and the length
of the path in the sense of point(path p, real t), at which the
cumulative arclength (measured from the beginning of the path)
equals L.

Chapter 6: Programming 34

real arcpoint(path p, real L);
returns point (p,arctime(p,L)).

real dirtime(path p, pair z);
returns the first "time", a real number between 0 and the length of
the path in the sense of point (path, real), at which the tangent
to the path has the direction of pair z, or -1 if this never happens.

real reltime(path p, real 1);
returns the time on path p at the relative fraction 1 of its arclength.

pair relpoint(path p, real 1);
returns the point on path p at the relative fraction 1 of its arclength.

pair midpoint (path p);
returns the point on path p at half of its arclength.

path reverse(path p);
returns a path running backwards along p.

path subpath(path p, int a, int b);
returns the subpath of p running from node a to node b. If a < b,
the direction of the subpath is reversed.

path subpath(path p, real a, real b);
returns the subpath of p running from path time a to path time b,
in the sense of point(path, real). If a < b, the direction of the
subpath is reversed.

real[] intersect(path p, path q, real fuzz=-1);

If p and q have at least one intersection point, return a real array
of length 2 containing the times representing the respective path
times along p and q, in the sense of point (path, real), for one
such intersection point (as chosen by the algorithm described on
page 137 of The MetaFontbook). The computations are performed
to the absolute error specified by fuzz, or if fuzz < 0, to machine
precision. If the paths do not intersect, return a real array of length
0.

real[][] intersections(path p, path q, real fuzz=-1);
Return all (unless there are infinitely many) intersection times of
paths p and q as a sorted array of real arrays of length 2 (see [sort],
page 72). The computations are performed to the absolute error
specified by fuzz, or if fuzz < 0, to machine precision.

real[] intersections(path p, explicit pair a, explicit pair b, real
fuzz=-1);
Return all (unless there are infinitely many) intersection times of
path p with the (infinite) line through points a and b as a sorted
array. The intersections returned are guaranteed to be correct to
within the absolute error specified by fuzz, or if fuzz < 0, to ma-
chine precision.

Chapter 6: Programming 35

real[] times(path p, real x)
returns all intersection times of path p with the vertical line through
(x,0).

real[] times(path p, explicit pair z)
returns all intersection times of path p with the horizontal line
through (0,z.y).

real[] mintimes(path p)
returns an array of length 2 containing times at which path p
reaches its minimal horizontal and vertical extents, respectively.

real[] maxtimes(path p)
returns an array of length 2 containing times at which path p
reaches its maximal horizontal and vertical extents, respectively.

pair intersectionpoint(path p, path q, real fuzz=-1);
returns the intersection point point (p,intersect (p,q,fuzz) [0]).

pair[] intersectionpoints(path p, path q, real fuzz=-1);
returns an array containing all intersection points of the paths p
and q.

pair extension(pair P, pair Q, pair p, pair q);
returns the intersection point of the extensions of the line segments
P--Q and p--q, or if the lines are parallel, (infinity,infinity).

slice cut(path p, path knife, int n);
returns the portions of path p before and after the nth intersection
of p with path knife as a structure slice (if no intersection exist is
found, the entire path is considered to be ‘before’ the intersection):
struct slice {

path before,after;
}

The argument n is treated as modulo the number of intersections.

slice firstcut(path p, path knife);
equivalent to cut(p,knife,0); Note that firstcut.after plays
the role of the MetaPost cutbefore command.

slice lastcut(path p, path knife);
equivalent to cut (p,knife,-1); Note that lastcut.before plays
the role of the MetaPost cutafter command.

path buildcycle(... path[] p);
This returns the path surrounding a region bounded by a list of two
or more consecutively intersecting paths, following the behaviour
of the MetaPost buildcycle command.

pair min(path p);

returns the pair (left,bottom) for the path bounding box of path p.
pair max(path p);

returns the pair (right,top) for the path bounding box of path p.

Chapter 6: Programming 36

guide

int windingnumber (path p, pair z);
returns the winding number of the cyclic path p relative to the point
z. The winding number is positive if the path encircles z in the
counterclockwise direction. If z lies on p the constant undefined
(defined to be the largest odd integer) is returned.

bool interior(int windingnumber, pen fillrule)
returns true if windingnumber corresponds to an interior point ac-
cording to fillrule.

bool inside(path p, pair z, pen fillrule=currentpen);
returns true iff the point z lies inside or on the edge of the region
bounded by the cyclic path p according to the fill rule fillrule
(see [fillrule], page 42).

int inside(path p, path q, pen fillrule=currentpen) ;
returns 1 if the cyclic path p strictly contains q according to the
fill rule fillrule (see [fillrule|, page 42), -1 if the cyclic path q
strictly contains p, and 0 otherwise.

pair inside(path p, pen fillrule=currentpen) ;
returns an arbitrary point strictly inside a cyclic path p according
to the fill rule fillrule (see [fillrule], page 42).

path[] strokepath(path g, pen p=currentpen) ;
returns the path array that PostScript would fill in drawing path
g with pen p.

an unresolved cubic spline (list of cubic-spline nodes and control points). The
implicit initializer for a guide is nullpath; this is useful for building up a guide
within a loop.

A guide is similar to a path except that the computation of the cubic spline is
deferred until drawing time (when it is resolved into a path); this allows two
guides with free endpoint conditions to be joined together smoothly. The solid
curve in the following example is built up incrementally as a guide, but only
resolved at drawing time; the dashed curve is incrementally resolved at each
iteration, before the entire set of nodes (shown in red) is known:

size (200);

real mexican(real x) {return (1-8x"2)*exp(-(4x72));}
int n=30;

real a=1.5;

real width=2a/n;

guide hat;
path solved;

for(int i=0; i < n; ++i) {
real t=-a+ixwidth;

Chapter 6: Programming 37

pair z=(t,mexican(t));
hat=hat..z;
solved=solved. .z;

¥

draw(hat) ;
dot (hat,red);
draw(solved,dashed) ;

We point out an efficiency distinction in the use of guides and paths:
guide g;
for(int i=0; i < 10; ++i)
g=g--(i,1);
path p=g;
runs in linear time, whereas
path p;
for(int i=0; i < 10; ++i)
p=p——(i,1);
runs in quadratic time, as the entire path up to that point is copied at each
step of the iteration.
The following routines can be used to examine the individual elements of a
guide without actually resolving the guide to a fixed path (except for internal
cycles, which are resolved):

int size(guide g);
Analogous to size(path p).
int length(guide g);
Analogous to length(path p).
bool cyclic(path p);
Analogous to cyclic(path p).
pair point(guide g, int t);
Analogous to point(path p, int t).
guide reverse(guide g);

Analogous to reverse(path p). If g is cyclic and also contains a
secondary cycle, it is first solved to a path, then reversed. If g is

Chapter 6: Programming 38

not cyclic but contains an internal cycle, only the internal cycle is
solved before reversal. If there are no internal cycles, the guide is
reversed but not solved to a path.

pair[] dirSpecifier(guide g, int i);
This returns a pair array of length 2 containing the outgoing (in el-
ement 0) and incoming (in element 1) direction specifiers (or (0,0)
if none specified) for the segment of guide g between nodes i and
i+l

pair[] controlSpecifier(guide g, int i);
If the segment of guide g between nodes i and i+1 has explicit
outgoing and incoming control points, they are returned as elements
0 and 1, respectively, of a two-element array. Otherwise, an empty
array is returned.

tensionSpecifier tensionSpecifier(guide g, int i);
This returns the tension specifier for the segment of guide g
between nodes i and i+1. The individual components of the
tensionSpecifier type can be accessed as the virtual members
in, out, and atLeast.

real[] curlSpecifier(guide g);
This returns an array containing the initial curl specifier (in element
0) and final curl specifier (in element 1) for guide g.

As a technical detail we note that a direction specifier given to nullpath mod-
ifies the node on the other side: the guides

a..{uptnullpath..b;
c..nullpath{up}..d;
e..{uptnullpath{down}..f;
are respectively equivalent to

a..nullpath. .{up}b;
c{up?}. .nullpath. .d;
e{down}. .nullpath. .{up}f;

6.3 Pens

In Asymptote, pens provide a context for the four basic drawing commands (see Chapter 4
[Drawing commands|, page 14). They are used to specify the following drawing attributes:
color, line type, line width, line cap, line join, fill rule, text alignment, font, font size,
pattern, overwrite mode, and calligraphic transforms on the pen nib. The default pen used
by the drawing routines is called currentpen. This provides the same functionality as the
MetaPost command pickup. The implicit initializer for pens is defaultpen.

Pens may be added together with the nonassociative binary operator +. This will add
the colors of the two pens. All other non-default attributes of the rightmost pen will
override those of the leftmost pen. Thus, one can obtain a yellow dashed pen by saying
dashed+red+green or red+green+dashed or red+dashed+green. The binary operator *
can be used to scale the color of a pen by a real number, until it saturates with one or more
color components equal to 1.

Chapter 6: Programming 39

e Colors are specified using one of the following colorspaces:

pen gray(real g);
This produces a grayscale color, where the intensity g lies in the interval
[0,1], with 0.0 denoting black and 1.0 denoting white.

pen rgb(real r, real g, real b);
This produces an RGB color, where each of the red, green, and blue inten-
sities r, g, b, lies in the interval [0,1].

pen cmyk(real c, real m, real y, real k);
This produces a CMYK color, where each of the cyan, magenta, yellow,
and black intensities c, m, y, k, lies in the interval [0,1].

pen invisible;
This special pen writes in invisible ink, but adjusts the bounding box as
if something had been drawn (like the \phantom command in TgX). The
function bool invisible(pen) can be used to test whether a pen is invis-
ible.

The default color is black; this may be changed with the routine defaultpen(pen).
The function colorspace(pen p) returns the colorspace of pen p as a string ("gray",
III.g'k)II7 "Cmyk“7 or n II)‘

The function real[] colors(pen) returns the color components of a pen. The
functions pen gray(pen), pen rgb(pen), and pen cmyk(pen) return new pens
obtained by converting their arguments to the respective color spaces. The function
colorless(pen=currentpen) returns a copy of its argument with the color attributes
stripped (to avoid color mixing).

A 6-character RGB hexidecimal string can be converted to a pen with the routine
pen rgb(string s);
A pen can be converted to a hexidecimal string with

e string hex(pen p);
Various shades and mixtures of the grayscale primary colors black and white, RGB
primary colors red, green, and blue, and RGB secondary colors cyan, magenta,

and yellow are defined as named colors, along with the CMYK primary colors Cyan,
Magenta, Yellow, and Black, in the module plain:

Chapter 6: Programming 40
Falered Falecyan black
ightred ghtcyan white
mediumred mediumcyan
red cyan orange
heavyred heavycyan fuchsia
brown deepcyan
darkbrown darkcyan H chartreuse

springgreen
Palegreen ink
ghtgreen ightmagenta purple
mediumgreen mediummagenta royalblue
green magenta
heavygreen heavymagenta
deepgreen deeEmagenta agenta
darkgreen darkmagenta Yellow
Black

Paleblue Faleyellow
ightblue ightyellow cmyk(red)
mediumblue mediumyellow cmyk blue)
blue ellow cmyk(green)
heavyblue ightolive
deepblue olive
darkblue darkolive

Falegray

1g tgray

mediumgray

gray

heavygray

deepgray

darkgray

The standard 140 RGB X11 colors can be imported with the command

import xllcolors;

and the standard 68 CMYK TgX colors can be imported with the command

import texcolors;

Note that there is some overlap between these two standards and the definitions of
some colors (e.g. Green) actually disagree.

Asymptote also comes with a asycolors.sty LaTeX package that defines to LaTeX
CMYK versions of Asymptote’s predefined colors, so that they can be used directly
within LaTeX strings. Normally, such colors are passed to LaTeX via a pen argument;
however, to change the color of only a portion of a string, say for a slide presentation,
(see Section 8.18 [slide], page 94) it may be desirable to specify the color directly to
LaTeX. This file can be passed to LaTeX with the Asymptote command

usepackage ("asycolors") ;

The structure hsv defined in plain_pens.asy may be used to convert between HSV
and RGB spaces, where the hue h is an angle in [0,360) and the saturation s and value
v lie in [0,1]:

pen p=hsv(180,0.5,0.75);

write(p); // ([default], red=0.375, green=0.75, blue=0.75)
hsv g=p;
write(q.h,q.s,q.v); // 180 0.5 0.75

e Line types are specified with the function pen linetype(real[] a, real offset=0,
bool scale=true, bool adjust=true), where a is an array of real array numbers.

Chapter 6: Programming 41

The optional parameter offset specifies where in the pattern to begin. The first
number specifies how far (if scale is true, in units of the pen line width; otherwise in
PostScript units) to draw with the pen on, the second number specifies how far to
draw with the pen off, and so on. If adjust is true, these spacings are automatically
adjusted by Asymptote to fit the arclength of the path. Here are the predefined line
types:

pen solid=linetype(new reall]);

pen dotted=linetype(new reall] {0,4});

pen dashed=linetype(new reall[] {8,8});

pen longdashed=linetype(new reall] {24,81});

pen dashdotted=linetype(new real[] {8,8,0,8});

pen longdashdotted=linetype(new reall] {24,8,0,8});

pen Dotted(pen p=currentpen) {return linetype(new real[] {0,3})+2*linewidth(p);}
pen Dotted=Dotted();

The default line type is solid; this may be changed with defaultpen(pen). The
line type of a pen can be determined with the functions real[] linetype (pen
p=currentpen), real offset(pen p), bool scale(pen p), and bool adjust (pen p)

e The pen line width is specified in PostScript units with pen linewidth(real). The
default line width is 0.5 bp; this value may be changed with defaultpen(pen). The line
width of a pen is returned by real linewidth(pen p=currentpen). For convenience,
in the module plain_pens we define
void defaultpen(real w) {defaultpen(linewidth(w));}
pen operator +(pen p, real w) {return p+linewidth(w);}
pen operator +(real w, pen p) {return linewidth(w)+p;}
so that one may set the line width like this:
defaultpen(2);
pen p=red+0.5;

e A pen with a specific PostScript line cap is returned on calling linecap with an
integer argument:
pen squarecap=linecap(0);
pen roundcap=linecap(1);
pen extendcap=linecap(2);

The default line cap, roundcap, may be changed with defaultpen(pen). The line cap
of a pen is returned by int linecap(pen p=currentpen).

e A pen with a specific PostScript join style is returned on calling linejoin with an
integer argument:

pen miterjoin=linejoin(0);

Chapter 6: Programming 42

pen roundjoin=linejoin(1);

pen beveljoin=linejoin(2);

The default join style, roundjoin, may be changed with defaultpen(pen).The join
style of a pen is returned by int linejoin(pen p=currentpen).

e A pen with a specific PostScript miter limit is returned by calling miterlimit (real).
The default miterlimit, 10.0, may be changed with defaultpen(pen). The miter limit
of a pen is returned by real miterlimit(pen p=currentpen).

e A pen with a specific PostScript fill rule is returned on calling fillrule with an
integer argument:

pen zerowinding=fillrule(O) ;
pen evenodd=fillrule(1);

The fill rule, which identifies the algorithm used to determine the insideness of a path or
array of paths, only affects the c1ip, £ill, and inside functions. For the zerowinding
fill rule, a point z is outside the region bounded by a path if the number of upward
intersections of the path with the horizontal line z--z+infinity minus the number
of downward intersections is zero. For the evenodd fill rule, z is considered to be
outside the region if the total number of such intersections is even. The default fill
rule, zerowinding, may be changed with defaultpen(pen). The fill rule of a pen is
returned by int fillrule(pen p=currentpen).

e A pen with a specific text alignment setting is returned on calling basealign with an
integer argument:

pen nobasealign=basealign(0);
pen basealign=basealign(1);

The default setting, nobasealign,which may be changed with defaultpen(pen),
causes the label alignment routines to use the full label bounding box for alignment.
In contrast, basealign requests that the TEX baseline be respected. The base align
setting of a pen is returned by int basealigin(pen p=currentpen).

e The font size is specified in TEX points (1 pt = 1/72.27 inches) with the function pen
fontsize(real size, real lineskip=1.2*size). The default font size, 12pt, may
be changed with defaultpen(pen). Nonstandard font sizes may require inserting
import fontsize;
at the beginning of the file (this requires the typelcm package available from

http://mirror.ctan.org/macros/latex/contrib/typelcm/
and included in recent LaTeX distributions). The font size and line skip of a pen
can be examined with the routines real fontsize(pen p=currentpen) and real
lineskip(pen p=currentpen), respectively.

e A pen using a specific LaTeX NFSS font is returned by calling the function pen
font (string encoding, string family, string series, string shape). The
default setting, font ("0T1","cmr","m","n"), corresponds to 12pt Computer Modern
Roman; this may be changed with defaultpen(pen). The font setting of a pen is
returned by string font (pen p=currentpen). Support for standardized international
characters is provided by the unicode package (see Section 8.20 [unicode], page 95).

Alternatively, one may select a fixed-size TEX font (on which fontsize has no effect)
like "cmr12" (12pt Computer Modern Roman) or "pcrr" (Courier) using the function

http://mirror.ctan.org/macros/latex/contrib/type1cm/

Chapter 6: Programming 43

pen font (string name). An optional size argument can also be given to scale the font
to the requested size: pen font (string name, real size)

A nonstandard font command can be generated with pen fontcommand(string).
A convenient interface to the following standard PostScript fonts is also provided:

pen AvantGarde(string series="m", string shape="n");

pen Bookman(string series="m", string shape="n");

pen Courier(string series="m", string shape="n");

pen Helvetica(string series="m", string shape="n");

pen NewCenturySchoolBook(string series="m", string shape="n");

pen Palatino(string series="m", string shape="n");

pen TimesRoman(string series="m", string shape="n");

pen ZapfChancery(string series="m", string shape="n");

pen Symbol(string series="m", string shape="n");

pen ZapfDingbats(string series="m", string shape="n");
e The transparency of a pen can be changed with the command:

pen opacity(real opacity=1, string blend="Compatible");

The opacity can be varied from 0 (fully transparent) to the default value of 1 (opaque),
and blend specifies one of the following foreground—background blending operations:

"Compatible","Normal","Multiply","Screen","Overlay","SoftLight",
"HardLight","ColorDodge", "ColorBurn", "Darken","Lighten","Difference",
"Exclusion","Hue","Saturation","Color","Luminosity",

as described in

http://partners . adobe . com/public/developer/en/pdf /PDFReferencel6 . pdf.
Since PostScript does not support transparency, this feature is only effective with
the -f pdf output format option; other formats can be produced from the resulting
PDF file with the ImageMagick convert program. Labels are always drawn with an
opacity of 1. A simple example of transparent filling is provided in the example file
transparency.asy.

e PostScript commands within a picture may be used to create a tiling pattern, iden-
tified by the string name, for £ill and draw operations by adding it to the global
PostScript frame currentpatterns, with optional left-bottom margin 1b and right-
top margin rt.

import patterns;

void add(string name, picture pic, pair 1b=0, pair rt=0);

To £ill or draw using pattern name, use the pen pattern("name"). For example,
rectangular tilings can be constructed using the routines picture tile(real
Hx=bmm, real Hy=0, pen p=currentpen, filltype filltype=NoFill), picture
checker (real Hx=bmm, real Hy=0, pen p=currentpen), and picture brick(real
Hx=5mm, real Hy=0, pen p=currentpen) defined in patterns.asy:

size(0,90);
import patterns;

add("tile",tile());
add("filledtilewithmargin",tile(6mm,4mm,red,Fill), (imm, imm) , (1mm, 1mm)) ;

http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf

Chapter 6: Programming 44

add("checker",checker());
add ("brick" ,brick());

real s=2.5;

filldraw(unitcircle,pattern("tile"));
filldraw(shift(s,0)*unitcircle,pattern("filledtilewithmargin"));
filldraw(shift(2s,0)*unitcircle,pattern("checker"));
filldraw(shift(3s,0)*unitcircle,pattern("brick"));

L T T TN
(1 T T T 1
A T T T T T3
L T T T T T T\
[T T T T T T
L T T T T T
\L T T T T 17
N L T T TV
L T T T 7
N L L T]
D
Hatch patterns can be generated with the routines picture hatch(real H=5mm,
pair dir=NE, pen p=currentpen), picture crosshatch(real H=bmm, pen
p=currentpen):
size(0,100);

import patterns;

add("hatch",hatch());
add ("hatchback" ,hatch(NW)) ;
add("crosshatch",crosshatch(3mm)) ;

real s=1.25;

filldraw(unitsquare,pattern("hatch"));
filldraw(shift(s,0)*unitsquare,pattern("hatchback"));
filldraw(shift(2s,0)*unitsquare,pattern("crosshatch"));

o2 %0 %%
SRR

Q
Q

Q
%

You may need to turn off aliasing in your PostScript viewer for patterns to ap-
pear correctly. Custom patterns can easily be constructed, following the examples
in patterns.asy. The tiled pattern can even incorporate shading (see [gradient shad-
ing], page 16), as illustrated in this example (not included in the manual because not
all printers support PostScript 3):

Chapter 6: Programming 45

size(0,100);
import patterns;

real d=4mm;

picture tiling;

path square=scale(d)*unitsquare;
axialshade(tiling,square,white, (0,0),black,(d,d));
fill(tiling,shift(d,d)*square,blue);
add("shadedtiling",tiling);

filldraw(unitcircle,pattern("shadedtiling"));

e One can specify a custom pen nib as an arbitrary polygonal path with pen
makepen(path); this path represents the mark to be drawn for paths containing a
single point. This pen nib path can be recovered from a pen with path nib(pen).
Unlike in MetaPost, the path need not be convex:

size(200);

pen convex=makepen(scale(10)*polygon(8))+grey;
draw((1,0.4),convex) ;
draw((0,0)---(1,1)..(2,0)--cycle,convex) ;

pen nonconvex=scale(10)x*

makepen ((0,0)--(0.25,-1)--(0.5,0.25)--(1,0)--(0.5,1.25)--cycle) +red;
draw((0.5,-1.5) ,nonconvex) ;
draw((0,-1.5)..(1,-0.5)..(2,-1.5) ,nonconvex) ;

¢

The value nullpath represents a circular pen nib (the default); an elliptical pen can
be achieved simply by multiplying the pen by a transform: yscale(2)*currentpen.

e One can prevent labels from overwriting one another by using the pen attribute

Chapter 6: Programming 46

overwrite, which takes a single argument:

Allow Allow labels to overwrite one another. This is the default behaviour (unless
overridden with defaultpen(pen).

Suppress Suppress, with a warning, each label that would overwrite another label.

SuppressQuiet
Suppress, without warning, each label that would overwrite another label.

Move Move a label that would overwrite another out of the way and issue a warn-
ing. As this adjustment is during the final output phase (in PostScript
coordinates) it could result in a larger figure than requested.

MoveQuiet
Move a label that would overwrite another out of the way, without warn-
ing. As this adjustment is during the final output phase (in PostScript
coordinates) it could result in a larger figure than requested.

The routine defaultpen() returns the current default pen attributes. Calling the routine
resetdefaultpen() resets all pen default attributes to their initial values.

6.4 Transforms

Asymptote makes extensive use of affine transforms. A pair (x,y) is transformed by the
transform t=(t.x,t.y,t.xx,t.xy,t.yx,t.yy) to (x’,y’), where

x?’ =t.x+t.xx *xx+txyx*xy

y’ =ty +t.yx xx+ tyyx*xy

This is equivalent to the PostScript transformation [t.xx t.yx t.xy t.yy t.x t.y].

Transforms can be applied to pairs, guides, paths, pens, strings, transforms, frames, and
pictures by multiplication (via the binary operator *) on the left (see [circle], page 31 for an
example). Transforms can be composed with one another and inverted with the function
transform inverse(transform t); they can also be raised to any integer power with the
~ operator.

The built-in transforms are:

transform identity();
the identity transform;

transform shift(pair z);
translates by the pair z;

transform shift(real x, real y);
translates by the pair (x,y);

transform xscale(real x);
scales by x in the = direction;

transform yscale(real y);
scales by y in the y direction;

transform scale(real s);
scale by s in both z and y directions;

Chapter 6: Programming 47

transform scale(real x, real y);

scale by x in the z direction and by y in the y direction;

transform slant(real s);

maps (x,y) —> (x+s*y,y);

transform rotate(real angle, pair z=(0,0));

rotates by angle in degrees about z;

transform reflect(pair a, pair b);

reflects about the line a--b.

The implicit initializer for transforms is identity(). The routines shift(transform
t) and shiftless(transform t) return the transforms (t.x,t.y,0,0,0,0) and
(0,0,t.xx,t.xy,t.yx,t.yy) respectively.

6.5 Frames and pictures

frame

picture

Frames are canvases for drawing in PostScript coordinates. While working
with frames directly is occasionally necessary for constructing deferred draw-
ing routines, pictures are usually more convenient to work with. The im-
plicit initializer for frames is newframe. The function bool empty(frame f)
returns true only if the frame f is empty. A frame may be erased with the
erase (frame) routine. The functions pair min(frame) and pair max(frame)
return the (left,bottom) and (right,top) coordinates of the frame bounding box,
respectively. The contents of frame src may be appended to frame dest with
the command

void add(frame dest, frame src);
or prepended with
void prepend(frame dest, frame src);

A frame obtained by aligning frame f in the direction align, in a manner
analogous to the align argument of label (see Section 4.4 [label], page 18), is
returned by

frame align(frame f, pair align);

To draw or fill a box or ellipse around a label or frame and return the boundary
as a path, use one of the predefined envelope routines

path box(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);
path roundbox(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true) ;
path ellipse(frame f, Label L="", real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill, bool above=true);

Pictures are high-level structures (see Section 6.8 [Structures|, page 57) defined
in the module plain that provide canvases for drawing in user coordinates. The

Chapter 6: Programming 48

default picture is called currentpicture. A new picture can be created like
this:
picture pic;
Anonymous pictures can be made by the expression new picture.
The size routine specifies the dimensions of the desired picture:
void size(picture pic=currentpicture, real x, real y=x,

bool keepAspect=Aspect);
If the x and y sizes are both 0, user coordinates will be interpreted as
PostScript coordinates. In this case, the transform mapping pic to the final
output frame is identity().
If exactly one of x or y is 0, no size restriction is imposed in that direction; it
will be scaled the same as the other direction.

If keepAspect is set to Aspect or true, the picture will be scaled with its aspect
ratio preserved such that the final width is no more than x and the final height
is no more than y.

If keepAspect is set to IgnoreAspect or false, the picture will be scaled in
both directions so that the final width is x and the height is y.

To make the user coordinates of picture pic represent multiples of x units in
the x direction and y units in the y direction, use

void unitsize(picture pic=currentpicture, real x, real y=x);

When nonzero, these x and y values override the corresponding size parameters

of picture pic.

The routine

void size(picture pic=currentpicture, real xsize, real ysize,
pair min, pair max);

forces the final picture scaling to map the user coordinates box (min,max) to a

region of width xsize and height ysize (when these parameters are nonzero).

Alternatively, calling the routine

transform fixedscaling(picture pic=currentpicture, pair min,
pair max, pen p=nullpen, bool warn=false);

will cause picture pic to use a fixed scaling to map user coordinates in
box (min,max) to the (already specified) picture size, taking account of the
width of pen p. A warning will be issued if the final picture exceeds the
specified size.

A picture pic can be fit to a frame and output to a file prefix.format using
image format format by calling the shipout function:

void shipout(string prefix=defaultfilename, picture pic=currentpicture,

orientation orientation=orientation,

string format="", bool wait=false, bool view=true,

string options="", string script="",

light light=currentlight, projection P=currentprojection)
The default output format, PostScript, may be changed with the -f or -tex
command-line options. The options, script, and projection parameters are

Chapter 6: Programming 49

only relevant for 3D pictures. If defaultfilename is an empty string, the prefix
outprefix () will be used.

A shipout() command is added implicitly at file exit if no previous shipout
commands have been executed. The default page orientation is Portrait; this
may be modified by changing the variable orientation. To output in landscape
mode, simply set the variable orientation=Landscape or issue the command

shipout (Landscape) ;
To rotate the page by —90 degrees, use the orientation Seascape. The orien-
tation UpsideDown rotates the page by 180 degrees.
A picture pic can be explicitly fit to a frame by calling
frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,
bool keepAspect=pic.keepAspect);
The default size and aspect ratio settings are those given to the size command
(which default to 0, 0, and true, respectively). The transformation that would

currently be used to fit a picture pic to a frame is returned by the member
function pic.calculateTransform().

In certain cases (e.g. 2D graphs) where only an approximate size estimate for
pic is available, the picture fitting routine

frame pic.scale(real xsize=this.xsize, real ysize=this.ysize,
bool keepAspect=this.keepAspect);

(which scales the resulting frame, including labels and fixed-size objects) will
enforce perfect compliance with the requested size specification, but should not
normally be required.

To draw a bounding box with margins around a picture, fit the picture to a
frame using the function

frame bbox(picture pic=currentpicture, real xmargin=0,
real ymargin=xmargin, pen p=currentpen,
filltype filltype=NoFill);

Here £illtype specifies one of the following fill types:
FillDraw Fill the interior and draw the boundary.

FillDraw(real xmargin=0, real ymargin=xmargin, pen fillpen=nullpen,
pen drawpen=nullpen) If fillpen is nullpen, fill with the drawing
pen; otherwise fill with pen fillpen. If drawpen is nullpen, draw
the boundary with £illpen; otherwise with drawpen. An optional
margin of xmargin and ymargin can be specified.

Fill Fill the interior.

Fill(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If p is nullpen, fill with the drawing pen; otherwise fill with pen p.
An optional margin of xmargin and ymargin can be specified.

NoFill Do not fill.

Draw Draw only the boundary.

Chapter 6: Programming 50

Draw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)
If p is nullpen, draw the boundary with the drawing pen; otherwise
draw with pen p. An optional margin of xmargin and ymargin can
be specified.

UnFill Clip the region.

UnFill(real xmargin=0, real ymargin=xmargin)
Clip the region and surrounding margins xmargin and ymargin.

RadialShade (pen penc, pen penr)
Fill varying radially from penc at the center of the bounding box
to penr at the edge.

RadialShadeDraw(real xmargin=0, real ymargin=xmargin, pen penc,
pen penr, pen drawpen=nullpen) Fill with RadialShade and draw
the boundary.

For example, to draw a bounding box around a picture with a 0.25 cm margin
and output the resulting frame, use the command:

shipout (bbox (0.25cm)) ;

A picture may be fit to a frame with the background color pen p, using the
function bbox (p,Fill).

The functions

pair min(picture pic, user=false);

pair max(picture pic, user=false);

pair size(picture pic, user=false);

calculate the bounds that picture pic would have if it were currently fit to a
frame using its default size specification. If user is false the returned value is
in PostScript coordinates, otherwise it is in user coordinates.

The function

pair point(picture pic=currentpicture, pair dir, bool user=true);
is a convenient way of determining the point on the bounding box of pic in the
direction dir relative to its center, ignoring the contributions from fixed-size
objects (such as labels and arrowheads). If user is true the returned value is
in user coordinates, otherwise it is in PostScript coordinates.

The function

pair truepoint(picture pic=currentpicture, pair dir, bool user=true);
is identical to point, except that it also accounts for fixed-size objects, using
the scaling transform that picture pic would have if currently fit to a frame

using its default size specification. If user is true the returned value is in user
coordinates, otherwise it is in PostScript coordinates.

Sometimes it is useful to draw objects on separate pictures and add one picture
to another using the add function:

void add(picture src, bool group=true,
filltype filltype=NoFill, bool above=true);
void add(picture dest, picture src, bool group=true,

Chapter 6: Programming 51

filltype filltype=NoFill, bool above=true);

The first example adds src to currentpicture; the second one adds src to
dest. The group option specifies whether or not the graphical user interface
xasy should treat all of the elements of src as a single entity (see Chapter 11
[GUI], page 166), filltype requests optional background filling or clipping,
and above specifies whether to add src above or below existing objects.

There are also routines to add a picture or frame src specified in postscript
coordinates to another picture dest (or currentpicture) about the user coor-
dinate position:

void add(picture src, pair position, bool group=true,
filltype filltype=NoFill, bool above=true);
void add(picture dest, picture src, pair position,
bool group=true, filltype filltype=NoFill, bool above=true);
void add(picture dest=currentpicture, frame src, pair position=0,
bool group=true, filltype filltype=NoFill, bool above=true);
void add(picture dest=currentpicture, frame src, pair position,
pair align, bool group=true, filltype filltype=NoFill,
bool above=true);

The optional align argument in the last form specifies a direction to use for
aligning the frame, in a manner analogous to the align argument of label (see
Section 4.4 [label], page 18). However, one key difference is that when align
is not specified, labels are centered, whereas frames and pictures are aligned so
that their origin is at position. Illustrations of frame alignment can be found
in the examples [errorbars|, page 107 and [image], page 127. If you want to
align three or more subpictures, group them two at a time:

picture picl;

real size=50;

size(picl,size);
fill(pic1,(0,0)--(50,100)--(100,0)--cycle,red);

picture pic2;
size(pic2,size);
fill(pic2,unitcircle,green);

picture pic3;
size(pic3,size);
£ill(pic3,unitsquare,blue);

picture pic;
add(pic,picl.fit (), (0,0),N);
add(pic,pic2.fit(),(0,0),108);

add(pic.fit(), (0,0),N);
add(pic3.£fit(), (0,0),108);

Chapter 6: Programming 52

Alternatively, one can use attach to automatically increase the size of picture
dest to accommodate adding a frame src about the user coordinate position:

void attach(picture dest=currentpicture, frame src,
pair position=0, bool group=true,
filltype filltype=NoFill, bool above=true);
void attach(picture dest=currentpicture, frame src,
pair position, pair align, bool group=true,
filltype filltype=NoFill, bool above=true);
To erase the contents of a picture (but not the size specification), use the
function

void erase(picture pic=currentpicture);

To save a snapshot of currentpicture, currentpen, and currentprojection,
use the function save ().

To restore a snapshot of currentpicture, currentpen, and
currentprojection, use the function restore().

Many further examples of picture and frame operations are provided in the base

module plain.

It is possible to insert verbatim PostScript commands in a picture with one

of the routines

void postscript(picture pic=currentpicture, string s);

void postscript(picture pic=currentpicture, string s, pair min,
pair max)

Here min and max can be used to specify explicit bounds associated with the

resulting PostScript code.

Verbatim TEX commands can be inserted in the intermediate LaTeX output file

with one of the functions

void tex(picture pic=currentpicture, string s);

void tex(picture pic=currentpicture, string s, pair min, pair max)

Here min and max can be used to specify explicit bounds associated with the
resulting TEX code.

Chapter 6: Programming 53

To issue a global TEX command (such as a TEX macro definition) in the TEX
preamble (valid for the remainder of the top-level module) use:

void texpreamble(string s);

The TEX environment can be reset to its initial state, clearing all macro defini-
tions, with the function

void texreset();

The routine

void usepackage(string s, string options="");

provides a convenient abbreviation for

texpreamble ("\usepackage["+options+"]{"+s+"}");

that can be used for importing LaTeX packages.

6.6 Files

Asymptote can read and write text files (including comma-separated value) files and
portable XDR (External Data Representation) binary files.

An input file must first be opened with
input (string name="", bool check=true, string comment="#", string mode="");
reading is then done by assignment:

file fin=input("test.txt");
real a=fin;

If the optional boolean argument check is false, no check will be made that the file
exists. If the file does not exist or is not readable, the function bool error(file) will
return true. The first character of the string comment specifies a comment character. If
this character is encountered in a data file, the remainder of the line is ignored. When
reading strings, a comment character followed immediately by another comment character
is treated as a single literal comment character.

One can change the current working directory for read operations to the contents of the
string s with the function string cd(string s), which returns the new working directory.
If string s is empty, the path is reset to the value it had at program startup.

When reading pairs, the enclosing parenthesis are optional. Strings are also read by
assignment, by reading characters up to but not including a newline. In addition, Asymptote
provides the function string getc(file) to read the next character (treating the comment
character as an ordinary character) and return it as a string.

A file named name can be open for output with
file output(string name="", bool update=false, string comment="#", string mode="");

If update=false, any existing data in the file will be erased and only write operations can
be used on the file. If update=true, any existing data will be preserved, the position will be
set to the end-of-file, and both reading and writing operations will be enabled. For security
reasons, writing to files in directories other than the current directory is allowed only if
the -globalwrite (or -nosafe) command-line option is specified. The function string
mktemp (string s) may be used to create and return the name of a unique temporary file
in the current directory based on the string s.

Chapter 6: Programming 54

There are two special files: stdin, which reads from the keyboard, and stdout, which
writes to the terminal. The implicit initializer for files is null.

Data of a built-in type T can be written to an output file by calling one of the functions

write(string s="", T x, suffix suffix=endl ... T[]);
write(file file, string s="", T x, suffix suffix=none ... T[]);
write(file file=stdout, string s="", explicit T[] x ... T[I[);

write(file file=stdout, T[I[]1);
write(file file=stdout, T[I[1[]1);
write(suffix suffix=endl);

write(file file, suffix suffix=none);

If file is not specified, stdout is used and terminated by default with a newline. If
specified, the optional identifying string s is written before the data x. An arbitrary number
of data values may be listed when writing scalars or one-dimensional arrays. The suffix
may be one of the following: none (do nothing), flush (output buffered data), endl (termi-
nate with a newline and flush), newl (terminate with a newline), DOSendl (terminate with
a DOS newline and flush), DOSnewl (terminate with a DOS newline), tab (terminate with a
tab), or comma (terminate with a comma). Here are some simple examples of data output:

file fout=output("test.txt");

write(fout,1); // Writes "1"
write(fout); // Writes a new line
write(fout,"List: ",1,2,3); // Writes "List: 1 2 3"

A file may be opened with mode="xdr", to read or write double precision (64-bit) reals
and single precision (32-bit) integers in Sun Microsystem’s XDR (External Data Repre-
sentation) portable binary format (available on all UNIX platforms). Alternatively, a file
may also be opened with mode="binary" to read or write double precision reals and single
precision integers in the native (nonportable) machine binary format. The virtual member
functions file singlereal (bool b=true) and file singleint(bool b=true) be used to
change the precision of real and integer I/O operations, respectively, for an XDR or binary
file £. Similarly, the function file signedint(bool b=true) can be used to modify the
signedness of integer reads and writes for an XDR or binary file f.

The virtual members name, mode, singlereal, singleint, and signedint may be used
to query the respective parameters for a given file.

One can test a file for end-of-file with the boolean function eof(file), end-of-line
with eol(file), and for I/O errors with error(file). One can flush the output buffers
with flush(file), clear a previous I/O error with clear(file), and close the file with
close(file). The function int precision(file file=stdout, int digits=0) sets the
number of digits of output precision for file to digits, provided digits is nonzero, and
returns the previous precision setting. The function int tell(file) returns the current
position in a file relative to the beginning. The routine seek(file file, int pos) can
be used to change this position, where a negative value for the position pos is interpreted
as relative to the end-of-file. For example, one can rewind a file file with the command
seek(file,0) and position to the final character in the file with seek(file,-1). The
command seekeof (file) sets the position to the end of the file.

Assigning settings.scroll=n for a positive integer n requests a pause after every n
output lines to stdout. One may then press Enter to continue to the next n output lines,

Chapter 6: Programming 55

s followed by Enter to scroll without further interruption, or q followed by Enter to quit
the current output operation. If n is negative, the output scrolls a page at a time (i.e. by
one less than the current number of display lines). The default value, settings.scroll=0,
specifies continuous scrolling.

The routines

string getstring(string name="", string default="", string prompt="",
bool store=true);
int getint(string name="", int default=0, string prompt="",
bool store=true);
real getreal(string name="", real default=0, string prompt="",
bool store=true);
pair getpair(string name="", pair default=0, string prompt="",

bool store=true);
triple gettriple(string name="", triple default=(0,0,0), string prompt="",
bool store=true);

defined in the module plain may be used to prompt for a value from stdin using the GNU
readline library. If store=true, the history of values for name is stored in the file ".asy_
history_"+name (see [history], page 164). The most recent value in the history will be
used to provide a default value for subsequent runs. The default value (initially default)
is displayed after prompt. These functions are based on the internal routines

string readline(string prompt="", string name="", bool tabcompletion=false);
void saveline(string name, string value, bool store=true);

Here, readline prompts the user with the default value formatted according to prompt,
while saveline is used to save the string value in a local history named name, optionally
storing the local history in a file ".asy_history_"+name.

The routine history(string name, int n=1) can be used to look up the n most recent
values (or all values up to historylines if n=0) entered for string name. The routine
history(int n=0) returns the interactive history. For example,

write(output("transcript.asy") ,history());
outputs the interactive history to the file transcript.asy.

The function int delete(string s) deletes the file named by the string s. Unless the
-globalwrite (or -nosafe) option is enabled, the file must reside in the current directory.
The function int rename(string from, string to) may be used to rename file from to

file to. Unless the -globalwrite (or -nosafe) option is enabled, this operation is restricted
to the current directory. The functions

int convert(string args="", string file="", string format="");
int animate(string args="", string file="", string format="");

call the ImageMagick commands convert and animate, respectively, with the arguments
args and the file name constructed from the strings file and format.

6.7 Variable initializers

A variable can be assigned a value when it is declared, as in int x=3; where the variable x
is assigned the value 3. As well as literal constants such as 3, arbitary expressions can be
used as initializers, as in real x=2*sin(pi/2) ;.

Chapter 6: Programming 56

A variable is not added to the namespace until after the initializer is evaluated, so for
example, in
int x=2;
int x=b*x;
the x in the initializer on the second line refers to the variable x declared on the first line.
The second line, then, declares a variable x shadowing the original x and initializes it to
the value 10.

Variables of most types can be declared without an explicit initializer and they will be
initialized by the default initializer of that type:

e Variables of the numeric types int, real, and pair are all initialized to zero; variables
of type triple are initialized to 0=(0,0,0).

e Dboolean variables are initialized to false.

e string variables are initialized to the empty string.

e transform variables are initialized to the identity transformation.

e path and guide variables are initialized to nullpath.

e pen variables are initialized to the default pen.

e frame and picture variables are initialized to empty frames and pictures, respectively.

e file variables are initialized to null.

The default initializers for user-defined array, structure, and function types are explained

in their respective sections. Some types, such as code, do not have default initializers. When

a variable of such a type is introduced, the user must initialize it by explicitly giving it a
value.

The default initializer for any type T can be redeclared by defining the function T
operator init(). For instance, int variables are usually initialized to zero, but in

int operator init() {

return 3;
}
int y;
the variable y is initialized to 3. This example was given for illustrative purposes; redeclaring
the initializers of built-in types is not recommended. Typically, operator init is used to
define sensible defaults for user-defined types.

The special type var may be used to infer the type of a variable from its initializer. If
the initializer is an expression of a unique type, then the variable will be defined with that
type. For instance,
var x=5;
var y=4.3;
var reddash=red+dashed;
is equivalent to
int x=5;
real y=4.3;
pen reddash=red+dashed;

var may also be used with the extended for loop syntax.

Chapter 6: Programming 57

int[] a = {1,2,3};
for (var x : a)
write(x);

6.8 Structures

Users may also define their own data types as structures, along with user-defined operators,
much as in C++. By default, structure members are public (may be read and modified
anywhere in the code), but may be optionally declared restricted (readable anywhere
but writeable only inside the structure where they are defined) or private (readable and
writable only inside the structure). In a structure definition, the keyword this can be used
as an expression to refer to the enclosing structure. Any code at the top-level scope within
the structure is executed on initialization.

Variables hold references to structures. That is, in the example:

struct T {
int x;

¥

T foo;
T bar=foo;
bar.x=5;

The variable foo holds a reference to an instance of the structure T. When bar is
assigned the value of foo, it too now holds a reference to the same instance as foo does.
The assignment bar.x=5 changes the value of the field x in that instance, so that foo.x
will also be equal to 5.

The expression new T creates a new instance of the structure T and returns a reference
to that instance. In creating the new instance, any code in the body of the record definition
is executed. For example:

int Tcount=0;

struct T {
int x;
++Tcount;

¥

T foo=new T;
T foo;

Here, new T produces a new instance of the class, which causes Tcount to be incremented,
tracking the number of instances produced. The declarations T foo=new T and T foo are
equivalent: the second form implicitly creates a new instance of T. That is, after the
definition of a structure T, a variable of type T is initialized to a new instance (new T) by
default. During the definition of the structure, however, variables of type T are initialized
to null by default. This special behaviour is to avoid infinite recursion of creating new
instances in code such as

struct tree {
int wvalue;
tree left;

Chapter 6: Programming 58

tree right;
b

The expression null can be cast to any structure type to yield a null reference, a reference
that does not actually refer to any instance of the structure. Trying to use a field of a null
reference will cause an error.

The function bool alias(T,T) checks to see if two structure references refer to the same
instance of the structure (or both to null). In example at the beginning of this section,
alias(foo,bar) would return true, but alias(foo,new T) would return false, as new T
creates a new instance of the structure T. The boolean operators == and != are by default
equivalent to alias and 'alias respectively, but may be overwritten for a particular type
(for example, to do a deep comparison).

Here is a simple example that illustrates the use of structures:

struct S {
real a=1;
real f(real a) {return a+this.a;}
}
S s; // Initializes s with new S;
write(s.f(2)); // Outputs 3

S operator + (S s1, S s2)
{
S result;
result.a=sl.a+s2.a;
return result;

¥

write((s+s).£(0)); // Outputs 2

It is often convenient to have functions that construct new instances of a structure. Say
we have a Person structure:

struct Person {
string firstname;
string lastname;

}

Person joe;
joe.firstname="Joe";
joe.lastname="Jones";

Creating a new Person is a chore; it takes three lines to create a new instance and to
initialize its fields (that’s still considerably less effort than creating a new person in real life,
though).

We can reduce the work by defining a constructor function Person(string,string):

struct Person {

Chapter 6: Programming 59

string firstname;
string lastname;

static Person Person(string firstname, string lastname) {
Person p;
p.-firstname=firstname;
p-lastname=lastname;
return p;

}

Person joe=Person.Person("Joe", "Jones");

While it is now easier than before to create a new instance, we still have to refer to the
constructor by the qualified name Person.Person. If we add the line

from Person unravel Person;

immediately after the structure definition, then the constructor can be used without quali-
fication: Person joe=Person("Joe", "Jones") ;.

The constructor is now easy to use, but it is quite a hassle to define. If you write a lot of
constructors, you will find that you are repeating a lot of code in each of them. Fortunately,
your friendly neighbourhood Asymptote developers have devised a way to automate much
of the process.

If, in the body of a structure, Asymptote encounters the definition of a function of
the form void operator init(args), it implicitly defines a constructor function of the
arguments args that uses the void operator init function to initialize a new instance
of the structure. That is, it essentially defines the following constructor (assuming the
structure is called Foo):

static Foo Foo(args) {
Foo instance;
instance.operator init(args);
return instance;

}

This constructor is also implicitly copied to the enclosing scope after the end of the
structure definition, so that it can used subsequently without qualifying it by the structure
name. Our Person example can thus be implemented as:

struct Person {
string firstname;
string lastname;

void operator init(string firstname, string lastname) {
this.firstname=firstname;
this.lastname=lastname;

}
}

Person joe=Person("Joe", "Jones");

Chapter 6: Programming 60

The use of operator init to implicitly define constructors should not be confused with
its use to define default values for variables (see Section 6.7 [Variable initializers|, page 55).
Indeed, in the first case, the return type of the operator init must be void while in the
second, it must be the (non-void) type of the variable.

The function cputime () returns a structure cputime with cumulative CPU times broken
down into the fields parent.user, parent.system, child.user, and child.system. For
convenience, the incremental fields change.user and change.system indicate the change
in the corresponding total parent and child CPU times since the last call to cputime (). The
function

void write(file file=stdout, string s="", cputime c,
string format=cputimeformat, suffix suffix=none);

displays the incremental user cputime followed by “u”, the incremental system cputime
followed by “s”, the total user cputime followed by “U”, and the total system cputime
followed by “S”.

Much like in C++, casting (see Section 6.13 [Casts|, page 77) provides for an elegant
implementation of structure inheritance, including virtual functions:

struct parent {
real x;
void operator init(int x) {this.x=x;}
void virtual(int) {write(0);}
void f() {virtual(l);}

void write(parent p) {write(p.x);}

struct child {
parent parent;
real y=3;
void operator init(int x) {parent.operator init(x);}
void virtual(int x) {write(x);}
parent.virtual=virtual;
void f()=parent.f;

parent operator cast(child child) {return child.parent;}

parent p=parent(1l);
child c=child(2);

write(c); // Outputs 2;
p.£0O; // Outputs 0;
c.TO; // Outputs 1;
write(c.parent.x); // Outputs 2;

write(c.y); // Outputs 3;

Chapter 6: Programming 61

For further examples of structures, see Legend and picture in the Asymptote base
module plain.

6.9 Operators

6.9.1 Arithmetic & logical operators

Asymptote uses the standard binary arithmetic operators. However, when one integer is
divided by another, both arguments are converted to real values before dividing and a real
quotient is returned (since this is usually what is intended). The function int quotient (int
X, int y) returns the greatest integer less than or equal to x/y. In all other cases both
operands are promoted to the same type, which will also be the type of the result:

+ addition

- subtraction

* multiplication

/ division

% modulo; the result always has the same sign as the divisor. In particular, this

makes gxquotient (p,q)+p%q == p for all integers p and nonzero integers g.

power; if the exponent (second argument) is an int, recursive multiplication is
used; otherwise, logarithms and exponentials are used (** is a synonym for ~).

The usual boolean operators are also defined:

== equals

I= not equals

< less than

<= less than or equals

>= greater than or equals

> greater than

&& and (with conditional evaluation of right-hand argument)
& and

I or (with conditional evaluation of right-hand argument)
| or
xor
! not
Asymptote also supports the C-like conditional syntax:
bool positive=(pi > 0) ? true : false;

The function T interp(T a, T b, real t) returns (1-t)*a+t*b for nonintegral built-in
arithmetic types T. If a and b are pens, they are first promoted to the same color space.

Asymptote also defines bitwise functions int AND(int,int), int OR(int,int), int
XOR(int,int), int NOT(int), int CLZ(int) (count leading zeros), and int CTZ(int)
(count trailing zeros).

Chapter 6: Programming 62

6.9.2 Self & prefix operators

As in C, each of the arithmetic operators +, -, *, /, %, and ~ can be used as a self operator.
The prefix operators ++ (increment by one) and -- (decrement by one) are also defined.
For example,

int i=1;

i+=2;

int j=++i;

is equivalent to the code

int i=1;

i=i+2;

int j=i=i+1;

However, postfix operators like i++ and i-- are not defined (because of the inherent
ambiguities that would arise with the -- path-joining operator). In the rare instances where
i++ and i-- are really needed, one can substitute the expressions (++i-1) and (--i+1),
respectively.

6.9.3 User-defined operators

The following symbols may be used with operator to define or redefine operators on struc-
tures and built-in types:

-tk /T N> ===k | 7T L nr o oo
<< >> § $$ @ @@

The operators on the second line have precedence one higher than the boolean operators <,
>, <=, and >=.

Guide operators like .. may be overloaded, say, to write a user function that produces
a new guide from a given guide:

guide dots(... guide[] g)=operator ..;

guide operator ..(... guide[] g) {
guide G;
if(g.length > 0) {
write(gl0]);
G=g[0];
}
for(int i=1; i < g.length; ++i) {
write(glil);
write();
G=dots(G,gl[il);
}
return G;

}

guide g=(0,0){up?}..{SW}(100,100){NE}..{curl 3}(50,50)..(10,10);
write("g=",g);

Chapter 6: Programming 63

6.10 Implicit scaling

If a numeric literal is in front of certain types of expressions, then the two are multiplied:
int x=2;

real y=2.0;

real cm=72/2.540005;

write(3x);
write(2.5x%);
write(3y);
write(-1.602e-19 y);
write(0.5(x,y));
write(2x72);
write(3x+2y);
write(3(x+2y));
write(3sin(x));
write(3(sin(x))"2);
write(10cm) ;

This produces the output
6
5
6
-3.204e-19
(1,1
8
10
18
2.72789228047704

2.48046543129542
283.464008929116

6.11 Functions

Asymptote functions are treated as variables with a signature (non-function variables have
null signatures). Variables with the same name are allowed, so long as they have distinct
signatures.

Functions arguments are passed by value. To pass an argument by reference, simply
enclose it in a structure (see Section 6.8 [Structures|, page 57).

Here are some significant features of Asymptote functions:

1. Variables with signatures (functions) and without signatures (nonfunction variables)
are distinct:

int x, xO);

x=5;
x=new int() {return 17;};
x=x(0); // calls x() and puts the result, 17, in the scalar x

2. Traditional function definitions are allowed:

Chapter 6: Programming 64

int sqr(int x)
{

return x*x;

¥

sqr=null; // but the function is still just a variable.
3. Casting can be used to resolve ambiguities:

int a, a(), b, b(); // Valid: creates four variables.

a=b; // Invalid: assignment is ambiguous.

a=(int) b; // Valid: resolves ambiguity.

(int) (a=b); // Valid: resolves ambiguity.

(int) a=b; // Invalid: cast expressions cannot be L-values.
int c(Q);

c=a; // Valid: only one possible assignment.

4. Anonymous (so-called "high-order") functions are also allowed:

typedef int intop(int);
intop adder(int m)
{

return new int(int n) {return m+n;};

}
intop addby7=adder(7);
write(addby7(1)); // Writes 8.

5. One may redefine a function f, even for calls to £ in previously declared functions, by
assigning another (anonymous or named) function to it. However, if f is overloaded
by a new function definition, previous calls will still access the original version of f, as
illustrated in this example:

void £() {
write("hi");
}
void g() {
£0O;
}
g(; // writes "hi"
f=new void() {write("bye");};
g(); // writes "bye"

void f() {write("overloaded");};

£f(); // writes "overloaded"
g(; // writes "bye"

6. Anonymous functions can be used to redefine a function variable that has been declared

Chapter 6: Programming 65

(and implicitly initialized to the null function) but not yet explicitly defined:
void f(bool b);

void g(bool b) {
if(b) £(b);
else write(b);

}

f=new void(bool b) {
write(b);
g(false);
};

g(true); // Writes true, then writes false.

Asymptote is the only language we know of that treats functions as variables, but allows
overloading by distinguishing variables based on their signatures.

Functions are allowed to call themselves recursively. As in C++, infinite nested recursion
will generate a stack overflow (reported as a segmentation fault, unless a fully working
version of the GNU library 1ibsigsegv (e.g. 2.4 or later) is installed at configuration time).

6.11.1 Default arguments

Asymptote supports a more flexible mechanism for default function arguments than C++:
they may appear anywhere in the function prototype. Because certain data types are
implicitly cast to more sophisticated types (see Section 6.13 [Casts], page 77) one can
often avoid ambiguities by ordering function arguments from the simplest to the most
complicated. For example, given

real f(int a=1, real b=0) {return a+b;}
then £ (1) returns 1.0, but £(1.0) returns 2.0.

The value of a default argument is determined by evaluating the given Asymptote ex-
pression in the scope where the called function is defined.

6.11.2 Named arguments

It is sometimes difficult to remember the order in which arguments appear in a function
declaration. Named (keyword) arguments make calling functions with multiple arguments
easier. Unlike in the C and C++ languages, an assignment in a function argument is inter-
preted as an assignment to a parameter of the same name in the function signature, not
within the local scope. The command-line option -d may be used to check Asymptote code
for cases where a named argument may be mistaken for a local assignment.

When matching arguments to signatures, first all of the keywords are matched, then
the arguments without names are matched against the unmatched formals as usual. For
example,
int f(int x, int y) {

return 10x+y;

+
write(f(4,x=3));

Chapter 6: Programming 66

outputs 34, as x is already matched when we try to match the unnamed argument 4, so it
gets matched to the next item, y.

For the rare occasions where it is desirable to assign a value to local variable within a
function argument (generally not a good programming practice), simply enclose the assign-
ment in parentheses. For example, given the definition of f in the previous example,
int x;
write(f (4, (x=3)));
is equivalent to the statements
int x;
x=3;
write(£f(4,3));
and outputs 43.

Parameters can be specified as “keyword-only” by putting keyword immediately before
the parameter name, as in int f (int keyword x) or int f (int keyword x=77). This forces
the caller of the function to use a named argument to give a value for this parameter. That
is, £ (x=42) is legal, but £ (25) is not. Keyword-only parameters must be listed after normal
parameters in a function definition.

As a technical detail, we point out that, since variables of the same name but different
signatures are allowed in the same scope, the code

int £(int x, int x(0)) {
return x+x();
}

int seven() {return 7;}

is legal in Asymptote, with £(2,seven) returning 9. A named argument matches the
first unmatched formal of the same name, so f(x=2,x=seven) is an equivalent call, but
f(x=seven,2) is not, as the first argument is matched to the first formal, and int ()
cannot be implicitly cast to int. Default arguments do not affect which formal a named
argument is matched to, so if £ were defined as

int f(int x=3, int x()) {
return x+x();

}

then f (x=seven) would be illegal, even though f (seven) obviously would be allowed.

6.11.3 Rest arguments

Rest arguments allow one to write functions that take a variable number of arguments:

// This function sums its arguments.
int sum(... int[] nums) {
int total=0;
for(int i=0; i < nums.length; ++i)
total += nums[i];
return total;

}

sum(1,2,3,4); // returns 10

Chapter 6: Programming 67

sum() ; // returns 0

// This function subtracts subsequent arguments from the first.

int subtract(int start ... int[] subs) {

for(int i=0; i < subs.length; ++i)

start -= subs[i];

return start;
}
subtract(10,1,2); // returns 7
subtract (10) ; // returns 10
subtract () ; // illegal

Putting an argument into a rest array is called packing. One can give an explicit list of
arguments for the rest argument, so subtract could alternatively be implemented as

int subtract(int start ... int[] subs) {
return start - sum(... subs);

}

One can even combine normal arguments with rest arguments:
sum(1,2,3 ... new int[] {4,5,6}); // returns 21

This builds a new six-element array that is passed to sum as nums. The opposite operation,
unpacking, is not allowed:

subtract(... new int[] {10, 1, 2});
is illegal, as the start formal is not matched.

If no arguments are packed, then a zero-length array (as opposed to null) is bound to
the rest parameter. Note that default arguments are ignored for rest formals and the rest
argument is not bound to a keyword.

In some cases, keyword-only parameters are helpful to avoid arguments intended for the
rest parameter to be assigned to other parameters. For example, here the use of keyword
is to avoid pnorm(1.0,2.0,0.3) matching 1.0 to p.

real pnorm(real keyword p=2.0 ... reall[] v)
{

return sum(v-p)~(1/p);
}

The overloading resolution in Asymptote is similar to the function matching rules used
in C++. Every argument match is given a score. Exact matches score better than matches
with casting, and matches with formals (regardless of casting) score better than packing an
argument into the rest array. A candidate is maximal if all of the arguments score as well
in it as with any other candidate. If there is one unique maximal candidate, it is chosen;
otherwise, there is an ambiguity error.

int f(path g);
int f(guide g);
£((0,0)--(100,100)); // matches the second; the argument is a guide

int g(int x, real y);

Chapter 6: Programming 68

int g(real x, int x);

g(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second argument

int h(... int[] rest);
int h(real x ... int[] rest);

h(1,2); // the second definition matches, even though there is a cast,
// because casting is preferred over packing

int i(int x ... int[] rest);
int i(real x, real y ... int[] rest);

i(3,4); // ambiguous; the first candidate is better for the first argument,
// but the second candidate is better for the second one

6.11.4 Mathematical functions

Asymptote has built-in versions of the standard libm mathematical real(real) functions
sin, cos, tan, asin, acos, atan, exp, log, powl0O, logl0O, sinh, cosh, tanh, asinh,
acosh, atanh, sqrt, cbrt, fabs, expml, loglp, as well as the identity function identity.
Asymptote also defines the order n Bessel functions of the first kind Jn(int n, real) and
second kind Yn(int n, real), as well as the gamma function gamma, the error function erf,
and the complementary error function erfc. The standard real(real, real) functions atan2,
hypot, fmod, remainder are also included.

The functions degrees(real radians) and radians(real degrees) can be used to
convert between radians and degrees. The function Degrees(real radians) returns the
angle in degrees in the interval [0,360). For convenience, Asymptote defines variants Sin,
Cos, Tan, aSin, aCos, and aTan of the standard trigonometric functions that use degrees
rather than radians. We also define complex versions of the sqrt, sin, cos, exp, log, and
gamma functions.

The functions floor, ceil, and round differ from their usual definitions in that they
all return an int value rather than a real (since that is normally what one wants). The
functions Floor, Ceil, and Round are respectively similar, except that if the result cannot
be converted to a valid int, they return intMax for positive arguments and intMin for
negative arguments, rather than generating an integer overflow. We also define a function
sgn, which returns the sign of its real argument as an integer (-1, 0, or 1).

There is an abs(int) function, as well as an abs(real) function (equivalent to
fabs(real)), an abs(pair) function (equivalent to length(pair)).

Random numbers can be seeded with srand(int) and generated with the int
rand() function, which returns a random integer between 0 and the integer randMax.
The unitrand() function returns a random number uniformly distributed in the
interval [0,1]. A Gaussian random number generator Gaussrand and a collection of
statistics routines, including histogram, are provided in the base file stats.asy. The
functions factorial (int n), which returns n!, and choose(int n, int k), which returns

n!/(k!(n — k)!), are also defined.

Chapter 6: Programming 69

When configured with the GNU Scientific Library (GSL), available from http: //
www . gnu . org / software / gsl/, Asymptote contains an internal module gsl that
defines the airy functions Ai(real), Bi(real), Ai_deriv(real), Bi_deriv(real),
zero_Ai(int), zero_Bi(int), zero_Ai_deriv(int), zero_Bi_deriv(int), the Bessel
functions I(int, real), K(int, real), j(int, real), y(int, real), i_scaled(int,
real), k_scaled(int, real), J(real, real), Y(real, real), I(real, real), K(real,
real), zero_J(real, int), the elliptic functions F(real, real), E(real, real),
and P(real, real), the Jacobi elliptic functions real[] sncndn(real,real), the
exponential /trigonometric integrals Ei, Si, and Ci, the Legendre polynomials P1(int,
real), and the Riemann zeta function zeta(real). For example, to compute the sine
integral Si of 1.0:
import gsl;
write(Si(1.0));

Asymptote also provides a few general purpose numerical routines:

real newton(int iterations=100, real f(real), real fprime(real), real x,
bool verbose=false);
Use Newton-Raphson iteration to solve for a root of a real-valued differentiable
function f, given its derivative fprime and an initial guess x. Diagnostics
for each iteration are printed if verbose=true. If the iteration fails after the
maximum allowed number of loops (iterations), realMax is returned.

real newton(int iterations=100, real f(real), real fprime(real), real x1,
real x2, bool verbose=false);
Use bracketed Newton-Raphson bisection to solve for a root of a real-valued
differentiable function f within an interval [x1,x2] (on which the endpoint values
of £ have opposite signs), given its derivative fprime. Diagnostics for each
iteration are printed if verbose=true. If the iteration fails after the maximum
allowed number of loops (iterations), realMax is returned.

real simpson(real f(real), real a, real b, real acc=realEpsilon, real
dxmax=b-a)
returns the integral of £ from a to b using adaptive Simpson integration.

6.12 Arrays

Appending [] to a built-in or user-defined type yields an array. The array element i of
an array A can be accessed as A[i]. By default, attempts to access or assign to an array
element using a negative index generates an error. Reading an array element with an index
beyond the length of the array also generates an error; however, assignment to an element
beyond the length of the array causes the array to be resized to accommodate the new
element. One can also index an array A with an integer array B: the array A[B] is formed
by indexing array A with successive elements of array B. A convenient Java-style shorthand
exists for iterating over all elements of an array; see [array iteration|, page 24.

The declaration
reall] A;

initializes A to be an empty (zero-length) array. Empty arrays should be distinguished from
null arrays. If we say

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

Chapter 6: Programming 70

real[] A=null;
then A cannot be dereferenced at all (null arrays have no length and cannot be read from
or assigned to).

Arrays can be explicitly initialized like this:
real[] A={0,1,2};

Array assignment in Asymptote does a shallow copy: only the pointer is copied (if one
copy if modified, the other will be too). The copy function listed below provides a deep
copy of an array.

Every array A of type T[] has the virtual members

e int length,

e int cyclic,

e int[] keys,

e T push(T x),

e void append (T[] a),

e T popQ),

e void insert(int i ... T[] x),
e void delete(int i, int j=1i),
e void delete(), and

e bool initialized(int n).

The member A.length evaluates to the length of the array. Setting A.cyclic=true
signifies that array indices should be reduced modulo the current array length. Reading
from or writing to a nonempty cyclic array never leads to out-of-bounds errors or array
resizing.

The member A.keys evaluates to an array of integers containing the indices of initialized
entries in the array in ascending order. Hence, for an array of length n with all entries
initialized, A.keys evaluates to {0,1,...,n-1}. A new keys array is produced each time
A keys is evaluated.

The functions A.push and A.append append their arguments onto the end of the array,
while A.insert(int i ... T[] x) inserts x into the array at index i. For convenience
A .push returns the pushed item. The function A.pop() pops and returns the last element,
while A.delete(int i, int j=i) deletes elements with indices in the range [i,j], shifting
the position of all higher-indexed elements down. If no arguments are given, A.delete()
provides a convenient way of deleting all elements of A. The routine A.initialized(int
n) can be used to examine whether the element at index n is initialized. Like all Asymptote
functions, push, append, pop, insert, delete, and initialized can be "pulled off" of the
array and used on their own. For example,

int[] A={1};

A.push(2); // A now contains {1,2}.
A.append(A); // A now contains {1,2,1,2}.
int f(int)=A.push;

£(3); // A now contains {1,2,1,2,3}.

int g()=A.pop;

Chapter 6: Programming 71

write(g()); // Outputs 3.

A.delete(0); // A now contains {2,1,2}.
A.delete(0,1); // A now contains {2}.
A.insert(1,3); // A now contains {2,3}.
A.insert(1 ... A); // A now contains {2,2,3,3}
A.insert(2,4,5); // A now contains {2,2,4,5,3,3}.

The [] suffix can also appear after the variable name; this is sometimes convenient for
declaring a list of variables and arrays of the same type:

real a,A[];
This declares a to be real and implicitly declares A to be of type reall].

In the following list of built-in array functions, T represents a generic type. Note that
the internal functions alias, array, copy, concat, sequence, map, and transpose, which
depend on type T[], are defined only after the first declaration of a variable of type T[].

new T[] returns a new empty array of type T[];

new T[] {1list}
returns a new array of type T[] initialized with 1list (a comma delimited list
of elements).

new T[n] returns a new array of n elements of type T[]. These n array elements are
not initialized unless they are arrays themselves (in which case they are each
initialized to empty arrays).

T[] array(int n, T value, int depth=intMax)
returns an array consisting of n copies of value. If value is itself an array,
a deep copy of value is made for each entry. If depth is specified, this deep
copying only recurses to the specified number of levels.

int[] sequence(int n)
if n >= 1 returns the array {0,1,...,n-1} (otherwise returns a null array);

int[] sequence(int n, int m)
if m >= n returns an array {n,n+1,...,m} (otherwise returns a null array);

T[] sequence(T f(int), int n)
if n >= 1 returns the sequence {f_i :i=0,1,...n-1} given a function T f (int)
and integer int n (otherwise returns a null array);

T[] map(T £(T), T[] a)
returns the array obtained by applying the function f to each element
of the array a. This is equivalent to sequence(new T(int i) {return
f(alil);},a.length).

int[] reverse(int n)
if n >= 1 returns the array {n-1,n-2,...,0} (otherwise returns a null array);

int[] complement (int[] a, int n)
returns the complement of the integer array a in {0,1,2,...,n-1}, so that
b[complement (a,b.length)] yields the complement of b[a].

Chapter 6: Programming 72

real[] uniform(real a, real b, int n)
if n >= 1 returns a uniform partition of [a,b] into n subintervals (otherwise
returns a null array);

int find(bool[], int n=1)
returns the index of the nth true value or -1 if not found. If n is negative,
search backwards from the end of the array for the -nth value;

int search(T[] a, T key)
For built-in ordered types T, searches a sorted array a of n elements for k,
returning the index i if a[i] <= key < a[i+1], -1 if key is less than all elements
of a, or n-1 if key is greater than or equal to the last element of a.

int search(T[] a, T key, bool less(T i, T j))
searches an array a sorted in ascending order such that element i precedes
element j if less(i,j) is true;

T[] copy (T[] a)
returns a deep copy of the array a;

T[] concat(... T[1[] a)
returns a new array formed by concatenating the given one-dimensional arrays
given as arguments;

bool alias(T[] a, T[] b)
returns true if the arrays a and b are identical;

T[] sort(T[] a)
For built-in ordered types T, returns a copy of a sorted in ascending order;

TLI[] sort (T[] a)
For built-in ordered types T, returns a copy of a with the rows sorted by the
first column, breaking ties with successively higher columns. For example:
String [] [] a={{llbob|| s llgll} s {|Ia1ice|| s ||5ll} s {"Pete" s ||7l|} s
{"alice","4"}};
// Row sort (by column O, using column 1 to break ties):
write(sort(a));

produces

alice 4
alice 5
bob 9
pete 7

T[] sort(T[] a, bool less(T i, T j))
returns a copy of a stably sorted in ascending order such that element i precedes
element j if less(i,j) is true.

T[] [] transpose(T[][] a)
returns the transpose of a.

T [1[] transpose(T[I1[1[] a, int[] perm)
returns the 3D transpose of a obtained by applying the permutation perm of
new int []1{0,1,2} to the indices of each entry.

Chapter 6: Programming 73

T sum(T[] a)
For arithmetic types T, returns the sum of a. In the case where T is bool, the
number of true elements in a is returned.

Tmin(T[] a)
Tmin(T[][] a)
Tmin(T[I[] (] a)

For built-in ordered types T, returns the minimum element of a.

T max (T[] a)
Tmax(T[]1[] a)
Tmax(TI 00O a)

For built-in ordered types T, returns the maximum element of a.

T[] min(T[] a, T[] b)
For built-in ordered types T, and arrays a and b of the same length, returns an
array composed of the minimum of the corresponding elements of a and b.

T[] max(T[] a, T[] b)
For built-in ordered types T, and arrays a and b of the same length, returns an
array composed of the maximum of the corresponding elements of a and b.

pair[] pairs(reall] x, reall] y);
For arrays x and y of the same length, returns the pair array sequence(new
pair(int i) {return (x[i],y[i]);},x.length).

pair([] fft(pair[] a, int sign=1)
returns the unnormalized Fast Fourier Transform of a (if the optional FFTW
package is installed), using the given sign. Here is a simple example:
int n=4;
pair[] f=sequence(n);
write(f);
pair[] g=fft(f,-1);
write();
write(g);
f=fft(g,1);
write();
write(£f/n);

real dot(reall[] a, reall] b)
returns the dot product of the vectors a and b.

pair dot(pair[] a, pair[] b)
returns the complex dot product sum(a*xconj (b)) of the vectors a and b.

real[] tridiagonal(reall] a, reall] b, reall] c, reall] £);
Solve the periodic tridiagonal problem Lx = f and return the solution x, where
f is an n vector and L is the n x n matrix

[blo] c[0] alo]]
[al1] b[1] c[1]]
L al2] b[2] c[2]]

Chapter 6: Programming 74

L .]
[cln-1] aln-1] b[n-1]]
For Dirichlet boundary conditions (denoted here by u[-1] and u[nl), replace
£[0] by £[0]-al[0]ul[-1] and f[n-1]1-c[n-1]Juln]; then set a[0]=c[n-1]1=0.

real[] solve(real[][] a, real[] b, bool warn=true)
Solve the linear equation ax = b by LU decomposition and return the solution
x, where a is an n X n matrix and b is an array of length n. For example:

import math;

reall]l[] a={{1,-2,3,0},{4,-5,6,2},{-7,-8,10,5},{1,50,1,-2}};
reall] b={7,19,33,3};

real[] x=solve(a,b);

write(a); write();

write(b); write();

write(x); write();

write(a*x);

If a is a singular matrix and warn is false, return an empty array. If the matrix
a is tridiagonal, the routine tridiagonal provides a more efficient algorithm
(see [tridiagonal], page 73).

real[][] solve(reall[]l[] a, real[][] b, bool warn=true)
Solve the linear equation ax = b and return the solution z, where a is an n xn
matrix and b is an n X m matrix. If a is a singular matrix and warn is false,
return an empty matrix.

real[][] identity(int n);
returns the n X n identity matrix.

real[][] diagonal(... reall] a)
returns the diagonal matrix with diagonal entries given by a.

real[] [] inverse(real[][] a)
returns the inverse of a square matrix a.

real[] quadraticroots(real a, real b, real c);
This numerically robust solver returns the real roots of the quadratic equation
az?® + br + ¢ = 0, in ascending order. Multiple roots are listed separately.

pair[] quadraticroots(explicit pair a, explicit pair b, explicit pair c);
This numerically robust solver returns the complex roots of the quadratic equa-
tion ax?® 4+ bx + c = 0.

real[] cubicroots(real a, real b, real c, real d);
This numerically robust solver returns the real roots of the cubic equation
ax® + bx?® + cx + d = 0. Multiple roots are listed separately.

Asymptote includes a full set of vectorized array instructions for arithmetic (including
self) and logical operations. These element-by-element instructions are implemented in C++
code for speed. Given
reall[] a={1,2};
real[] b={3,2};

Chapter 6: Programming 75

then a == b and a >= 2 both evaluate to the vector {false, true}. To test whether all
components of a and b agree, use the boolean function all(a == b). One can also use
conditionals like (a >= 2) 7 a : b, which returns the array {3,2}, or write((a>=2) 7 a :
null, which returns the array {2}.

All of the standard built-in 1ibm functions of signature real (real) also take a real array
as an argument, effectively like an implicit call to map.

As with other built-in types, arrays of the basic data types can be read in by assignment.
In this example, the code

file fin=input("test.txt");
real[] A=fin;

reads real values into A until the end-of-file is reached (or an I/O error occurs).

The virtual members dimension, line, csv, word, and read of a file are useful for reading
arrays. For example, if line mode is set with file line(bool b=true), then reading will
stop once the end of the line is reached instead:
file fin=input("test.txt");
real[] A=fin.line();

Since string reads by default read up to the end of line anyway, line mode normally
has no effect on string array reads. However, there is a white-space delimiter mode for
reading strings, file word(bool b=true), which causes string reads to respect white-space
delimiters, instead of the default end-of-line delimiter:

file fin=input("test.txt").line().word();
real[] A=fin;

Another useful mode is comma-separated-value mode, file csv(bool b=true), which
causes reads to respect comma delimiters:
file fin=csv(input("test.txt"));
real[] A=fin;

To restrict the number of values read, use the file dimension(int) function:
file fin=input("test.txt");
real[] A=dimension(fin,10);

This reads 10 values into A, unless end-of-file (or end-of-line in line mode) occurs first.
Attempting to read beyond the end of the file will produce a runtime error message. Speci-
fying a value of 0 for the integer limit is equivalent to the previous example of reading until
end-of-file (or end-of-line in line mode) is encountered.

Two- and three-dimensional arrays of the basic data types can be read in like this:
file fin=input("test.txt");
real[][] A=fin.dimension(2,3);
real[][][] B=fin.dimension(2,3,4);

Again, an integer limit of zero means no restriction.

Sometimes the array dimensions are stored with the data as integer fields at the beginning
of an array. Such 1, 2, or 3 dimensional arrays can be read in with the virtual member
functions read (1), read(2), or read(3), respectively:
file fin=input("test.txt");
real[] A=fin.read(1);

Chapter 6: Programming 76

real[][] B=fin.read(2);
real[][][] C=fin.read(3);

One, two, and three-dimensional arrays of the basic data types can be output with the
functions write(file,T[]), write(file, T[] []1), write(file, T[] [][1), respectively.

6.12.1 Slices

Asymptote allows a section of an array to be addressed as a slice using a Python-like syntax.
If A is an array, the expression A[m:n] returns a new array consisting of the elements of A
with indices from m up to but not including n. For example,

int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[2:6]; // y={2,3,4,5};
int[] z=x[5:10]; // =z={5,6,7,8,9};

If the left index is omitted, it is taken be 0. If the right index is omitted it is taken to be
the length of the array. If both are omitted, the slice then goes from the start of the array
to the end, producing a non-cyclic deep copy of the array. For example:

int[] x={0,1,2,3,4,5,6,7,8,9};

int[] y=x[:4]; // y={0,1,2,3}

int[] z=x[6:1; // z={5,6,7,8,9}

int[] w=x[:]1; // w={0,1,2,3,4,5,6,7,8,9}, distinct from array x.

If A is a non-cyclic array, it is illegal to use negative values for either of the indices.
If the indices exceed the length of the array, however, they are politely truncated to that
length.

For cyclic arrays, the slice A[m:n] still consists of the cells with indices in the set [m,n),
but now negative values and values beyond the length of the array are allowed. The indices
simply wrap around. For example:

int[] x={0,1,2,3,4,5,6,7,8,9};
x.cyclic=true;
int[] y=x[8:15]; // y={8,9,0,1,2,3,4%}.
int[] z=x[-5:5); // =z={5,6,7,8,9,0,1,2,3,4}
int[] w=x[-3:171; // w={7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6}
Notice that with cyclic arrays, it is possible to include the same element of the original
array multiple times within a slice. Regardless of the original array, arrays produced by
slices are always non-cyclic.

b b b b

If the left and right indices of a slice are the same, the result is an empty array. If the
array being sliced is empty, the result is an empty array. Any slice with a left index greater
than its right index will yield an error.

Slices can also be assigned to, changing the value of the original array. If the array being
assigned to the slice has a different length than the slice itself, elements will be inserted or
removed from the array to accommodate it. For instance:
string[] toppings={"mayo", "salt", "ham", "lettuce"};
toppings[0:2]=new string[] {"mustard", "pepper"};

// Now toppings={"mustard", "pepper", "ham", "lettuce"}
toppings[2:3]=new string[] {"turkey", "bacon" };
// Now toppings={"mustard", "pepper", "turkey", "bacon", "lettuce"}

Chapter 6: Programming 77

toppings[0:3]=new string[] {"tomato"};
// Now toppings={"tomato", "bacon", "lettuce"}

If an array is assigned to a slice of itself, a copy of the original array is assigned to the
slice. That is, code such as x[m:n]=x is equivalent to x[m:n]=copy(x). One can use the
shorthand x[m:m]=y to insert the contents of the array y into the array x starting at the
location just before x [m].

For a cyclic array, a slice is bridging if it addresses cells up to the end of the array and
then continues on to address cells at the start of the array. For instance, if A is a cyclic array
of length 10, A[8:12], A[-3:1], and A[5:25] are bridging slices whereas A[3:7], A[7:10],
A[-3:0] and A[103:107] are not. Bridging slices can only be assigned to if the number
of elements in the slice is exactly equal to the number of elements we are assigning to it.
Otherwise, there is no clear way to decide which of the new entries should be A[0] and an
error is reported. Non-bridging slices may be assigned an array of any length.

For a cyclic array A an expression of the form A[A.length:A.length] is equivalent to
the expression A[0:0] and so assigning to this slice will insert values at the start of the
array. A.append() can be used to insert values at the end of the array.

It is illegal to assign to a slice of a cyclic array that repeats any of the cells.

6.13 Casts

Asymptote implicitly casts int to real, int to pair, real to pair, pair to path, pair to
guide, path to guide, guide to path, real to pen, pair[] to guide[], pair[] to pathl[],
path to path[], and guide to path[], along with various three-dimensional casts defined
in three.asy. Implicit casts are automatically attempted on assignment and when trying
to match function calls with possible function signatures. Implicit casting can be inhibited
by declaring individual arguments explicit in the function signature, say to avoid an
ambiguous function call in the following example, which outputs O:

int f(pair a) {return 0;}
int f(explicit real x) {return 1;}

write(£(0));
Other conversions, say real to int or real to string, require an explicit cast:

int i=(int) 2.5;
string s=(string) 2.5;

real[] a={2.5,-3.5};
int[] b=(@int [1) a;
write(stdout,b); // Outputs 2,-3
Casting to user-defined types is also possible using operator cast:

struct rpair {
real radius;
real angle;

}

pair operator cast(rpair x) {

Chapter 6: Programming 78

return (x.radius*cos(x.angle),x.radius*sin(x.angle));

}

rpair x;
x.radius=1;
x.angle=pi/6;

write(x); // Outputs (0.866025403784439,0.5)

One must use care when defining new cast operators. Suppose that in some code one
wants all integers to represent multiples of 100. To convert them to reals, one would first
want to multiply them by 100. However, the straightforward implementation

real operator cast(int x) {return x*100;}

is equivalent to an infinite recursion, since the result x*100 needs itself to be cast from
an integer to a real. Instead, we want to use the standard conversion of int to real:

real convert(int x) {return x*100;}
real operator cast(int x)=convert;

Explicit casts are implemented similarly, with operator ecast.

6.14 Import

While Asymptote provides many features by default, some applications require specialized
features contained in external Asymptote modules. For instance, the lines

access graph;

graph.axes();

draw x and y axes on a two-dimensional graph. Here, the command looks up the module
under the name graph in a global dictionary of modules and puts it in a new variable named
graph. The module is a structure, and we can refer to its fields as we usually would with a
structure.

Often, one wants to use module functions without having to specify the module name.
The code

from graph access axes;

adds the axes field of graph into the local name space, so that subsequently, one can just
write axes (). If the given name is overloaded, all types and variables of that name are
added. To add more than one name, just use a comma-separated list:
from graph access axes, xaxis, yaxis;
Wild card notation can be used to add all non-private fields and types of a module to the
local name space:
from graph access *;

Similarly, one can add the non-private fields and types of a structure to the local envi-
ronment with the unravel keyword:

struct matrix {
real a,b,c,d;

}

Chapter 6: Programming 79

real det(matrix m) {
unravel m;
return ax*xd-bx*c;

}

Alternatively, one can unravel selective fields:

real det(matrix m) {
from m unravel a,b,c as C,d;
return a*d-bx*C;

}
The command
import graph;
is a convenient abbreviation for the commands

access graph;
unravel graph;

That is, import graph first loads a module into a structure called graph and then adds
its non-private fields and types to the local environment. This way, if a member variable
(or function) is overwritten with a local variable (or function of the same signature), the
original one can still be accessed by qualifying it with the module name.

Wild card importing will work fine in most cases, but one does not usually know all of the
internal types and variables of a module, which can also change as the module writer adds
or changes features of the module. As such, it is prudent to add import commands at the
start of an Asymptote file, so that imported names won’t shadow locally defined functions.
Still, imported names may shadow other imported names, depending on the order in which
they were imported, and imported functions may cause overloading resolution problems if
they have the same name as local functions defined later.

To rename modules or fields when adding them to the local environment, use as:

access graph as graph2d;
from graph access xaxis as xline, yaxis as yline;

The command
import graph as graph2d;
is a convenient abbreviation for the commands

access graph as graph2d;
unravel graph2d;

Except for a few built-in modules, such as settings, all modules are implemented as
Asymptote files. When looking up a module that has not yet been loaded, Asymptote
searches the standard search paths (see Section 2.5 [Search paths], page 6) for the matching
file. The file corresponding to that name is read and the code within it is interpreted as the
body of a structure defining the module.

If the file name contains nonalphanumeric characters, enclose it with quotation marks:
access "/usr/share/asymptote/graph.asy" as graph;
from "/usr/share/asymptote/graph.asy" access axes;

import "/usr/share/asymptote/graph.asy" as graph;

Chapter 6: Programming 80

It is an error if modules import themselves (or each other in a cycle). The module name
to be imported must be known at compile time.

However, you can import an Asymptote module determined by the string s at runtime
like this:

eval ("import "+s,true);
To conditionally execute an array of asy files, use
void asy(string format, bool overwrite ... string[] s);

The file will only be processed, using output format format, if overwrite is true or the
output file is missing.

One can evaluate an Asymptote expression (without any return value, however) con-
tained in the string s with:

void eval(string s, bool embedded=false);

It is not necessary to terminate the string s with a semicolon. If embedded is true, the
string will be evaluated at the top level of the current environment. If embedded is false
(the default), the string will be evaluated in an independent environment, sharing the same
settings module (see [settings], page 162).

One can evaluate arbitrary Asymptote code (which may contain unescaped quotation
marks) with the command

void eval(code s, bool embedded=false);
Here code is a special type used with quote {} to enclose Asymptote code like this:
real a=1;
code s=quote {
write(a);
s
eval (s,true); // Outputs 1

To include the contents of an existing file graph verbatim (as if the contents of the file
were inserted at that point), use one of the forms:

include graph;
include "/usr/share/asymptote/graph.asy";

To list all global functions and variables defined in a module named by the contents of
the string s, use the function

void list(string s, bool imports=false);

Imported global functions and variables are also listed if imports is true.

6.15 Static

Static qualifiers allocate the memory address of a variable in a higher enclosing level.

For a function body, the variable is allocated in the block where the function is defined;
so in the code

struct s {
int count() {
static int c=0;
+4c;

Chapter 6: Programming 81

return c;
}
3
there is one instance of the variable c for each object s (as opposed to each call of count).
Similarly, in
int factorial(int n) {
int helper(int k) {
static int x=1;
x *= k;
return k == 1 ? x : helper(k-1);
}

return helper(n);

3

there is one instance of x for every call to factorial (and not for every call to helper), so
this is a correct, but ugly, implementation of factorial.

Similarly, a static variable declared within a structure is allocated in the block where
the structure is defined. Thus,

struct A {
struct B {
static pair z;
}
}
creates one object z for each object of type A created.
In this example,
int pow(int n, int k) {
struct A {
static int x=1;
void helper() {
X *= n;
}
}
for(int i=0; i < k; ++i) {
A a;
a.helper();
}

return A.x;
}
there is one instance of x for each call to pow, so this is an ugly implementation of expo-
nentiation.

Loop constructs allocate a new frame in every iteration. This is so that higher-order
functions can refer to variables of a specific iteration of a loop:
void £(Q);
for(int i=0; i < 10; ++i) {

int x=i;

Chapter 6: Programming 82

if (x==5) {
f=new void () { write(x); }
}
}
£0O;

Here, every iteration of the loop has its own variable x, so £ () will write 5. If a variable
in a loop is declared static, it will be allocated where the enclosing function or structure
was defined (just as if it were declared static outside of the loop). For instance, in:

void £() {
static int x;
for(int i=0; i < 10; ++i) {
static int y;
X
}

both x and y will be allocated in the same place, which is also where £ is also allocated.

Statements may also be declared static, in which case they are run at the place where
the enclosing function or structure is defined. Declarations or statements not enclosed
in a function or structure definition are already at the top level, so static modifiers are
meaningless. A warning is given in such a case.

Since structures can have static fields, it is not always clear for a qualified name whether
the qualifier is a variable or a type. For instance, in:
struct A {

static int x;

}

pair A;

int y=A.x;

does the A in A.x refer to the structure or to the pair variable. It is the convention in
Asymptote that, if there is a non-function variable with the same name as the qualifier, the
qualifier refers to that variable, and not to the type. This is regardless of what fields the
variable actually possesses.

Chapter 7: LaTeX usage 83

7 LaTeX usage

Asymptote comes with a convenient LaTeX style file asymptote.sty that makes LaTeX
Asymptote-aware. Entering Asymptote code directly into the LaTeX source file, at the point
where it is needed, keeps figures organized and avoids the need to invent new file names for
each figure. Simply add the line \usepackage{asymptote} at the beginning of your file and
enclose your Asymptote code within a \begin{asy}...\end{asy} environment. As with
the LaTeX comment environment, the \end{asy} command must appear on a line by itself,
with no trailing commands/comments. A blank line is not allowed after \begin{asy}.

The sample LaTeX file below, named latexusage.tex, can be run as follows:

latex latexusage
asy latexusage-*.asy
latex latexusage

or

pdflatex latexusage
asy latexusage—*.asy
pdflatex latexusage

To switch between using inline Asymptote code with latex and pdflatex you may first
need to remove the files latexusage-*.tex.

An even better method for processing a LaTeX file with embedded Asymptote code is to
use the latexmk utility from

http://mirror.ctan.org/support/latexmk/

after putting the contents of http://sourceforge.net/p/asymptote/code/HEAD/tree/
trunk/asymptote/doc/latexmkrc in a file latexmkrc in the same directory. The command

latexmk -pdf latexusage

will then call Asymptote automatically, recompiling only the figures that have changed.
Since each figure is compiled in a separate system process, this method also tends to use
less memory. To store the figures in a separate directory named asy, one can define

\def\asydir{asy}
in latexusage.tex and put the contents of http://sourceforge.net/p/asymptote/

code/HEAD/tree/trunk/asymptote/doc/latexmkrc_asydir in a file latexmkrc in the
same directory. External Asymptote code in filename.asy should be included with

\asyinclude [<options>]{<filename.asy>}

so that latexmk will recognize when the code is changed. Note that latemk requires perl,
available from http://www.perl.org/.

One can specify width, height, keepAspect, viewportwidth, viewportheight, attach,
and inline. keyval-style options to the asy and asyinclude environments. Three-
dimensional PRC files may either be embedded within the page (the default) or attached as
annotated (but printable) attachments, using the attach option and the attachfile2 (or
older attachfile) LaTeX package. The inline option generates inline LaTeX code instead of
EPS or PDF files. This makes 2D LaTeX symbols visible to the \begin{asy}. . .\end{asy}
environment. In this mode, Asymptote correctly aligns 2D LaTeX symbols defined outside
of \begin{asy}...\end{asy}, but treats their size as zero; an optional second string can
be given to Label to provide an estimate of the unknown label size.

http://mirror.ctan.org/support/latexmk/
http://sourceforge.net/p/asymptote/code/HEAD/tree/trunk/asymptote/doc/latexmkrc
http://sourceforge.net/p/asymptote/code/HEAD/tree/trunk/asymptote/doc/latexmkrc
http://sourceforge.net/p/asymptote/code/HEAD/tree/trunk/asymptote/doc/latexmkrc_asydir
http://sourceforge.net/p/asymptote/code/HEAD/tree/trunk/asymptote/doc/latexmkrc_asydir
http://www.perl.org/

Chapter 7: LaTeX usage 84

Note that if the latex TEX engine is used with the inline option, labels might not show
up in DVI viewers that cannot handle raw PostScript code. One can use dvips/dvipdf
to produce PostScript/PDF output (we recommend using the modified version of dvipdf
in the Asymptote patches directory, which accepts the dvips -z hyperdvi option).

Here now is latexusage.tex:

\documentclass[12pt] {article}

% Use this form to include EPS (latex) or PDF (pdflatex) files:
\usepackage{asymptote}

% Use this form with latex or pdflatex to include inline LaTeX code by default:
%\usepackage[inline] {asymptote}

% Use this form with latex or pdflatex to create PDF attachments by default:
%\usepackage [attach] {asymptote}

% Enable this line to support the attach option:
%\usepackage [dvips]{attachfile2}

\begin{document}

% Optional subdirectory for latex files (no spaces):
\def\asylatexdir{}

% Optional subdirectory for asy files (no spaces):
\def\asydir{}

\begin{asydef}

// Global Asymptote definitions can be put here.

import three;

usepackage ("bm") ;

texpreamble ("\def\V#1{\bm{#1}}");

// One can globally override the default toolbar settings here:
// settings.toolbar=true;

\end{asydef}

Here is a venn diagram produced with Asymptote, drawn to width 4cm:

\def\A{A}
\def\B{\V{B}}

%\begin{figure}
\begin{center}
\begin{asy}
size(4cm,0);

pen colourl=red;
pen colour2=green;

Chapter 7: LaTeX usage 85

pair z0=(0,0);

pair z1=(-1,0);

pair z2=(1,0);

real r=1.5;

path cl=circle(zl,r);
path c2=circle(z2,r);
£fill(cl,colourl);
£i11(c2,colour?);

picture intersection=new picture;
fill(intersection,cl,colouri+colour?);
clip(intersection,c2);

add(intersection);

draw(cl);
draw(c2);

//draw("\A" ,box,z1) ; // Requires [inline] package option.
//draw(Label ("\B","B") ,box,z2); // Requires [inline] package option.
draw("A" ,box,z1);

draw("\V{B}" ,box,z2);

pair z=(0,-2);
real m=3;
margin BigMargin=Margin(0,m*dot (unit(z1-z),unit(z0-z)));

draw(Label ("$A\cap B$",0),conj(z)--z0,Arrow,BigMargin) ;
draw(Label ("$A\cup B$",0),z--z0,Arrow,BigMargin) ;
draw(z--z1,Arrow,Margin(0O,m));
draw(z--z2,Arrow,Margin(0,m));

shipout (bbox (0.25cm)) ;

\end{asy}

%\caption{Venn diagram}\label{venn}
\end{center}

%\end{figure}

Each graph is drawn in its own environment. One can specify the width

and height to \LaTeX\ explicitly. This 3D example can be viewed
interactively either with Adobe Reader or Asymptote’s fast OpenGL-based
renderer. To support {\tt latexmk}, 3D figures should specify
\verb+inline=true+. It is sometimes desirable to embed 3D files as annotated
attachments; this requires the \verb+attach=true+ option as well as the
\verb+attachfile2+ \LaTeX\ package.

\begin{center}

Chapter 7: LaTeX usage

\begin{asy}[height=4cm,inline=true,attach=false,viewportwidth=\linewidth]

currentprojection=orthographic(5,4,2);
draw(unitcube,blue);

label ("$V-E+F=2$",(0,1,0.5),3Y,blue+fontsize(17pt));
\end{asy}

\end{center}

One can also scale the figure to the full line width:
\begin{center}

\begin{asy}[width=\the\linewidth, inline=true]

pair z0=(0,0);

pair z1=(2,0);

pair z2=(5,0);

pair zf=z1+0.75%(z2-z1);

draw(z1--z2);

dot(z1,red+0.15cm) ;

dot(z2,darkgreen+0.3cm) ;
label("m",z1,1.2N,red);

label ("M",z2,1.5N,darkgreen) ;

label ("$\hat{\ }$",zf,0.2+S,fontsize(24pt)+blue);

pair s=-0.2%I;
draw("x",z0+s--z1+s,N,red,Arrows,Bars,PenMargins) ;
s=-0.5%*I;
draw("\bar{x}",z0+s--zf+s,blue,Arrows,Bars,PenMargins) ;
s=-0.95%I;

draw ("X",z0+s--z2+s,darkgreen, Arrows,Bars,PenMargins) ;
\end{asy}

\end{center}

\end{document}

86

Chapter 7: LaTeX usage 87

Here is a venn diagram produced with Asymptote, drawn to width 4cm:

ANB

V

AUB

Each graph is drawn in its own environment. One can specify the width
and height to ITEX explicitly. This 3D example can be viewed interac-
tively either with Adobe Reader or Asymptote’s fast OpenGL-based ren-
derer. To support latexmk, 3D figures should specify inline=true. It is
sometimes desirable to embed 3D files as annotated attachments; this re-
quires the attach=true option as well as the attachfile2 IXTEX package.

V-E+F=2

One can also scale the figure to the full line width:

m M

Y

A Y
&

Y

Chapter 8: Base modules 88

8 Base modules
Asymptote currently ships with the following base modules:

8.1 plain

This is the default Asymptote base file, which defines key parts of the drawing language
(such as the picture structure).

By default, an implicit private import plain; occurs before translating a file and be-
fore the first command given in interactive mode. This also applies when translating files
for module definitions (except when translating plain, of course). This means that the
types and functions defined in plain are accessible in almost all Asymptote code. Use the
-noautoplain command-line option to disable this feature.

8.2 simplex

This package solves the two-variable linear programming problem using the simplex method.
It is used by the module plain for automatic sizing of pictures.

8.3 math
This package extends Asymptote’s mathematical capabilities with useful functions such as

void drawline(picture pic=currentpicture, pair P, pair Q, pen p=currentpen);
draw the visible portion of the (infinite) line going through P and Q, without
altering the size of picture pic, using pen p.

real intersect(triple P, triple Q, triple n, triple Z);
returns the intersection time of the extension of the line segment PQ with the
plane perpendicular to n and passing through Z.

triple intersectionpoint(triple nO, triple PO, triple nl, triple P1);
Return any point on the intersection of the two planes with normals n0 and
nl passing through points PO and P1, respectively. If the planes are parallel,
return (infinity,infinity,infinity).

pair[] quarticroots(real a, real b, real c, real d, real e);
returns the four complex roots of the quartic equation ax*+bx3+cr?+dr+e = 0.

pair[1[] £ft(pair[][] a, int sign=1)
returns the two-dimensional Fourier transform of a using the given sign.

real time(path g, real x, int n=0)
returns the nth intersection time of path g with the vertical line through x.

real time(path g, explicit pair z, int n=0)
returns the nth intersection time of path g with the horizontal line through
(0,z.y).

real value(path g, real x, int n=0)
returns the nth y value of g at x.

Chapter 8: Base modules 89

real value(path g, explicit pair z, int n=0)
returns the nth x value of g at y=z.y.

real slope(path g, real x, int n=0)
returns the nth slope of g at x.

real slope(path g, explicit pair z, int n=0)
returns the nth slope of g at y=z.y.

int[][] segment(bool[] b) returns the indices of consecutive true-element segments
of bool[] b.

real[] partialsum(real[] a)
returns the partial sums of a real array a.

real[] partialsum(reall[] a, reall[] dx)
returns the partial dx-weighted sums of a real array a.

bool increasing(real[] a, bool strict=false)
returns, if strict=false, whether i > j implies al[i] >=al[jl, or if
strict=true, whether i > j implies implies a[i] > a[j].

int unique(real[] a, real x)

if the sorted array a does not contain x, insert it sequentially, returning the
index of x in the resulting array.

bool lexorder(pair a, pair b)
returns the strict lexicographical partial order of a and b.

bool lexorder(triple a, triple b)
returns the strict lexicographical partial order of a and b.

8.4 interpolate

This module implements Lagrange, Hermite, and standard cubic spline interpolation in
Asymptote, as illustrated in the example interpolatel.asy.

8.5 geometry

This module, written by Philippe Ivaldi, provides an extensive set of geometry routines,
including perpendicular symbols and a triangle structure. Link to the documentation
for the geometry module are posted here: http://asymptote.sourceforge.net/links.
html, including an extensive set of examples, http://wuw.piprime.fr/files/asymptote/
geometry/, and an index:

http://www.piprime.fr/files/asymptote/geometry/modules/geometry.
asy.index.type.html

8.6 trembling

This module, written by Philippe Ivaldi and illustrated in the example floatingdisk.asy,
allows one to draw wavy lines, as if drawn by hand.

http://asymptote.sourceforge.net/links.html
http://asymptote.sourceforge.net/links.html
http://www.piprime.fr/files/asymptote/geometry/
http://www.piprime.fr/files/asymptote/geometry/
http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.index.type.html
http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.index.type.html

Chapter 8: Base modules 90

8.7 stats

This package implements a Gaussian random number generator and a collection of statistics
routines, including histogram and leastsquares.

8.8 patterns

This package implements Postscript tiling patterns and includes several convenient pattern
generation routines.

8.9 markers

This package implements specialized routines for marking paths and angles. The principal
mark routine provided by this package is

markroutine markinterval(int n=1, frame f, bool rotated=false);

which centers n copies of frame £ within uniformly space intervals in arclength along the
path, optionally rotated by the angle of the local tangent.

The marker (see [marker|, page 107) routine can be used to construct new markers from
these predefined frames:

frame stickframe(int n=1, real size=0, pair space=0, real angle=0,
pair offset=0, pen p=currentpen);

frame circlebarframe(int n=1, real barsize=0,
real radius=0,real angle=0,
pair offset=0, pen p=currentpen,
filltype filltype=NoFill, bool above=false);

frame crossframe(int n=3, real size=0, pair space=0,
real angle=0, pair offset=0, pen p=currentpen) ;

frame tildeframe(int n=1, real size=0, pair space=0,
real angle=0, pair offset=0, pen p=currentpen) ;

For convenience, this module also constructs the markers StickIntervalMarker,
CrossIntervalMarker, CircleBarIntervalMarker, and TildeIntervalMarker from the
above frames. The example markers1.asy illustrates the use of these markers:

Chapter 8: Base modules 91

! 2 | : | |
3 | : : 4 — H H
5 _\&‘_\&‘_\&‘_ 6 M ¢ W\ o NNV o
7 8 @ O
e e Sl R S
11 \ * 12 Ao Ay o
13 6o ey aey 14 |
1]
=
15 16 S
N
a
17

This package also provides a routine for marking an angle AOB:

void markangle(picture pic=currentpicture, Label L="",
int n=1, real radius=0, real space=0,
pair A, pair 0, pair B, arrowbar arrow=None,
pen p=currentpen, margin margin=NoMargin,
marker marker=nomarker) ;

as illustrated in the example markers2.asy.

Chapter 8: Base modules 92

8.10 tree

This package implements an example of a dynamic binary search tree.

8.11 binarytree

This module can be used to draw an arbitrary binary tree and includes an input routine for
the special case of a binary search tree, as illustrated in the example binarytreetest.asy

import binarytree;
picture pic,pic2;

binarytree bt=binarytree(1,2,4,nil,5,nil,nil,0,nil,nil,3,6,nil,nil,7);
draw(pic,bt,condensed=false);

binarytree st=searchtree(10,5,2,1,3,4,7,6,8,9,15,13,12,11,14,17,16,18,19);
draw(pic2,st,blue, condensed=true);

add(pic.fit (), (0,0),10N);
add(pic2.£fit(),(0,0),108);

Chapter 8: Base modules 93

8.12 drawtree

This is a simple tree drawing module used by the example treetest.asy.

8.13 syzygy

This module automates the drawing of braids, relations, and syzygies, along with the cor-
responding equations, as illustrated in the example knots.asy.

8.14 feynman

This package, contributed by Martin Wiebusch, is useful for drawing Feynman diagrams,
as illustrated by the examples eetomumu.asy and fermi.asy.

8.15 roundedpath

This package, contributed by Stefan Knorr, is useful for rounding the sharp corners of paths,
as illustrated in the example file roundpath.asy.

8.16 animation

This module allows one to generate animations, as illustrated by the files wheel.asy,
wavepacket.asy, and cube.asy in the animations subdirectory of the examples direc-

Chapter 8: Base modules 94

tory. These animations use the ImageMagick convert program to merge multiple images
into a GIF or MPEG movie.

The related animate module, derived from the animation module, generates higher-
quality portable clickable PDF movies, with optional controls. This requires installing the
package

http://mirror.ctan.org/macros/latex/contrib/animate/animate.sty

(version 2007/11/30 or later) in a new directory animate in the local LaTeX directory (for
example, in /usr/local/share/texmf/tex/latex/animate). On UNIX systems, one must
then execute the command texhash.

The example pdfmovie.asy in the animations directory, along with the slide presenta-
tions slidemovies.asy and intro.asy, illustrate the use of embedded PDF movies. The
examples inlinemovie.tex and inlinemovie3.tex show how to generate and embed PDF
movies directly within a LaTeX file (see Chapter 7 [LaTeX usage], page 83). The member
function

string pdf (fit fit=NoBox, real delay=animationdelay, string options="",
bool keep=settings.keep, bool multipage=true);

of the animate structure accepts any of the animate.sty options, as described here:

http://mirror.ctan.org/macros/latex/contrib/animate/doc/animate.
pdf

8.17 embed
This module provides an interface to the LaTeX package (included with MikTeX)

http://mirror.ctan.org/macros/latex/contrib/media9
for embedding movies, sounds, and 3D objects into a PDF document.

A more portable method for embedding movie files, which should work on any platform
and does not require the media9 package, is provided by using the external module instead
of embed.

Examples of the above two interfaces is provided in the file embeddedmovie.asy and
externalmovie.asy in the animations subdirectory of the examples directory. For a higher
quality embedded movie generated directly by Asymptote, use the animate module along
with the animate. sty package to embed a portable PDF animation (see [animate], page 94).

An example of embedding U3D code is provided in the file embeddedu3d.asy.

8.18 slide

This package provides a simple yet high-quality facility for making presentation slides,
including portable embedded PDF animations (see the file slidemovies.asy). A simple
example is provided in the file slidedemo.asy.

8.19 MetaPost

This package provides some useful routines to help MetaPost users migrate old MetaPost
code to Asymptote. Further contributions here are welcome.

http://mirror.ctan.org/macros/latex/contrib/animate/animate.sty
http://mirror.ctan.org/macros/latex/contrib/animate/doc/animate.pdf
http://mirror.ctan.org/macros/latex/contrib/animate/doc/animate.pdf
http://mirror.ctan.org/macros/latex/contrib/media9

Chapter 8: Base modules 95

Unlike MetaPost, Asymptote does not implicitly solve linear equations and therefore
does not have the notion of a whatever unknown. The routine extension (see [extension],
page 35) provides a useful replacement for a common use of whatever: finding the inter-
section point of the lines through P, Q and p, q. For less common occurrences of whatever,
one can use the built-in explicit linear equation solver solve instead.

8.20 unicode

Import this package at the beginning of the file to instruct LaTeX to accept unicode (UTF-
8) standardized international characters. To use Cyrillic fonts, you will need to change the
font encoding;:

import unicode;
texpreamble ("\usepackage{mathtext}\usepackage [russian] {babel}");
defaultpen(font ("T2A","cmr","m","n"));

Support for Chinese, Japanese, and Korean fonts is provided by the CJK package:
http://mirror.ctan.org/languages/chinese/CJK/

The following commands enable the CJK song family (within a label, you can also tem-
porarily switch to another family, say kai, by prepending "\CJKfamily{kai}" to the label
string):

texpreamble ("\usepackage{CJIK}

\AtBeginDocument{\begin{CJK*}{GBK}{song}}
\AtEndDocument{\clearpage\end{CJK*}}");

8.21 latinl

If you don’t have LaTeX support for unicode installed, you can enable support for Western
European languages (ISO 8859-1) by importing the module latinl. This module can be
used as a template for providing support for other ISO 8859 alphabets.

8.22 babel

This module implements the LaTeX babel package in Asymptote. For example:

import babel;
babel("german") ;

8.23 labelpath

This module uses the PSTricks pstextpath macro to fit labels along a path (properly
kerned, as illustrated in the example file curvedlabel.asy), using the command

void labelpath(picture pic=currentpicture, Label L, path g,
string justify=Centered, pen p=currentpen);

Here justify is one of LeftJustified, Centered, or RightJustified. The component
of a shift transform applied to the Label is interpreted as a shift along the curve, whereas
the y component is interpreted as a shift away from the curve. All other Label transforms
are ignored. This package requires the latex tex engine and inherits the limitations of the
PSTricks \pstextpath macro.

http://mirror.ctan.org/languages/chinese/CJK/

Chapter 8: Base modules 96

8.24 labelpath3

This module, contributed by Jens Schwaiger, implements a 3D version of labelpath that
does not require the PSTricks package. An example is provided in curvedlabel3.asy.

8.25 annotate

This module supports PDF annotations for viewing with Adobe Reader, via the function
void annotate(picture pic=currentpicture, string title, string text,

pair positiomn);
Annotations are illustrated in the example file annotation.asy. Currently, annotations are
only implemented for the latex (default) and tex TEX engines.

8.26 CAD

This package, contributed by Mark Henning, provides basic pen definitions and measure-
ment functions for simple 2D CAD drawings according to DIN 15. It is documented sepa-
rately, in the file CAD.pdf.

8.27 graph

This package implements two-dimensional linear and logarithmic graphs, including auto-
matic scale and tick selection (with the ability to override manually). A graph is a guide
(that can be drawn with the draw command, with an optional legend) constructed with one
of the following routines:
[]
guide graph(picture pic=currentpicture, real f(real), real a, real b,
int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, real f(real), real a, real b,
int n=ngraph, real T(real)=identity, bool3 cond(real),
interpolate join=operator --);
Returns a graph using the scaling information for picture pic (see [automatic scaling],
page 112) of the function f on the interval [T(a),T(b)], sampling at n points evenly
spaced in [a,b], optionally restricted by the bool3 function cond on [a,b]. If cond is:
e true, the point is added to the existing guide;
e default, the point is added to a new guide;

e false, the point is omitted and a new guide is begun.

The points are connected using the interpolation specified by join:

e operator -- (linear interpolation; the abbreviation Straight is also accepted);

e operator .. (piecewise Bezier cubic spline interpolation; the abbreviation Spline
is also accepted);

e Hermite (standard cubic spline interpolation using boundary condition notaknot,
natural, periodic, clamped(real slopea, real slopeb)), or monotonic. The
abbreviation Hermite is equivalent to Hermite (notaknot) for nonperiodic data
and Hermite (periodic) for periodic data).

Chapter 8: Base modules 97

guide graph(picture pic=currentpicture, real x(real), real y(real),
real a, real b, int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, real x(real), real y(real),
real a, real b, int n=ngraph, real T(real)=identity,
bool3 cond(real), interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the parametrized
function (x(¢),y(¢)) for t in the interval [T(a),T(b)], sampling at n points evenly spaced
in [a,b], optionally restricted by the bool3 function cond on [a,b], using the given
interpolation type.

guide graph(picture pic=currentpicture, pair z(real), real a, real D,
int n=ngraph, real T(real)=identity,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, pair z(real), real a, real b,
int n=ngraph, real T(real)=identity, bool3 cond(real),
interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the parametrized
function z(t) for ¢ in the interval [T(a),T(b)], sampling at n points evenly spaced in [a,b],
optionally restricted by the bool3 function cond on [a,b], using the given interpolation
type.

guide graph(picture pic=currentpicture, pair[] z,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, pair[] z, bool3[] cond,
interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the elements of the
array z, optionally restricted to those indices for which the elements of the boolean
array cond are true, using the given interpolation type.

guide graph(picture pic=currentpicture, reall[] x, reall] vy,
interpolate join=operator --);
guide[] graph(picture pic=currentpicture, reall] x, reall] vy,
bool3[] cond, interpolate join=operator --);
Returns a graph using the scaling information for picture pic of the elements of the
arrays (x,y), optionally restricted to those indices for which the elements of the boolean
array cond are true, using the given interpolation type.

guide polargraph(picture pic=currentpicture, real f(real), real a,

real b, int n=ngraph, interpolate join=operator --);
Returns a polar-coordinate graph using the scaling information for picture pic of the
function £ on the interval [a,b], sampling at n evenly spaced points, with the given
interpolation type.

Chapter 8: Base modules 98

guide polargraph(picture pic=currentpicture, real[] r, real[] theta,
interpolate join=operator--);

Returns a polar-coordinate graph using the scaling information for picture pic of the

elements of the arrays (r,theta), using the given interpolation type.

An axis can be drawn on a picture with one of the following commands:
[J

void xaxis(picture pic=currentpicture, Label L="", axis axis=YZero,
real xmin=-infinity, real xmax=infinity, pen p=currentpen,
ticks ticks=NoTicks, arrowbar arrow=None, bool above=false);

Draw an x axis on picture pic from r=xmin to x=xmax using pen p, optionally labelling
it with Label L. The relative label location along the axis (a real number from [0,1])
defaults to 1 (see [Label], page 18), so that the label is drawn at the end of the axis.
An infinite value of xmin or xmax specifies that the corresponding axis limit will be
automatically determined from the picture limits. The optional arrow argument takes
the same values as in the draw command (see [arrows|, page 14). The axis is drawn
before any existing objects in pic unless above=true. The axis placement is determined
by one of the following axis types:

YZero(bool extend=true)
Request an z axis at y=0 (or y=1 on a logarithmic axis) extending to the
full dimensions of the picture, unless extend=false.

YEquals(real Y, bool extend=true)
Request an x axis at y=Y extending to the full dimensions of the picture,
unless extend=false.

Bottom(bool extend=false)
Request a bottom axis.

Top(bool extend=false)
Request a top axis.

BottomTop(bool extend=false)
Request a bottom and top axis.

Custom axis types can be created by following the examples in graph.asy. One can
easily override the default values for the standard axis types:

import graph;

YZero=new axis(bool extend=true) {
return new void(picture pic, axisT axis) {
real y=pic.scale.x.scale.logarithmic 7 1 : O;
axis.value=I*pic.scale.y.T(y);
axis.position=1;
axis.side=right;

Chapter 8: Base modules 99

axis.align=2.5E;
axis.value2=Infinity;
axis.extend=extend;
};
};
YZero=YZero() ;

The default tick option is NoTicks. The options LeftTicks, RightTicks, or Ticks
can be used to draw ticks on the left, right, or both sides of the path, relative to the
direction in which the path is drawn. These tick routines accept a number of optional
arguments:

ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
int N=0, int n=0, real Step=0, real step=0,
bool begin=true, bool end=true, tickmodifier modify=None,
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen);
If any of these parameters are omitted, reasonable defaults will be chosen:

Label format
override the default tick label format (defaultformat, initially
"$%.4g$"), rotation, pen, and alignment (for example, LeftSide, Center,
or RightSide) relative to the axis. To enable LaTeX math mode fonts,
the format string should begin and end with $ see [format]|, page 29. If
the format string is trailingzero, trailing zeros will be added to the tick
labels; if the format string is "%", the tick label will be suppressed;

ticklabel
is a function string(real x) returning the label (by default,
format(format.s,x)) for each major tick value x;

bool beginlabel
include the first label;

bool endlabel
include the last label;

int N when automatic scaling is enabled (the default; see [automatic scaling],
page 112), divide a linear axis evenly into this many intervals, separated
by major ticks; for a logarithmic axis, this is the number of decades between
labelled ticks;

int n divide each interval into this many subintervals, separated by minor ticks;
real Step the tick value spacing between major ticks (if N=0);
real step the tick value spacing between minor ticks (if n=0);

bool begin
include the first major tick;

bool end include the last major tick;

Chapter 8: Base modules 100

tickmodifier modify;
an optional function that takes and returns a tickvalue structure having
real[] members major and minor consisting of the tick values (to allow
modification of the automatically generated tick values);

real Size the size of the major ticks (in PostScript coordinates);
real size the size of the minor ticks (in PostScript coordinates);

bool extend;
extend the ticks between two axes (useful for drawing a grid on the graph);

pen pTick an optional pen used to draw the major ticks;
pen ptick an optional pen used to draw the minor ticks.

For convenience, the predefined tickmodifiers OmitTick(... reall] x),
OmitTickInterval(real a, real b), and OmitTickIntervals(reall] a, reall[]
b) can be used to remove specific auto-generated ticks and their labels. The
OmitFormat (string s=defaultformat ... real[] x) ticklabel can be wused to
remove specific tick labels but not the corresponding ticks. The tickmodifier NoZero
is an abbreviation for OmitTick (0) and the ticklabel NoZeroFormat is an abbrevation
for OmitFormat (0).

It is also possible to specify custom tick locations with LeftTicks, RightTicks, and
Ticks by passing explicit real arrays Ticks and (optionally) ticks containing the
locations of the major and minor ticks, respectively:

ticks LeftTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
real[] Ticks, real[] ticks=new reall],
real Size=0, real size=0, bool extend=false,
pen pTick=nullpen, pen ptick=nullpen)

void yaxis(picture pic=currentpicture, Label L="", axis axis=XZero,
real ymin=-infinity, real ymax=infinity, pen p=currentpen,
ticks ticks=NoTicks, arrowbar arrow=None, bool above=false,
bool autorotate=true);

Draw a y axis on picture pic from y=ymin to y=ymax using pen p, optionally labelling
it with a Label L that is autorotated unless autorotate=false. The relative location
of the label (a real number from [0,1]) defaults to 1 (see [Label], page 18). An infinite
value of ymin or ymax specifies that the corresponding axis limit will be automatically
determined from the picture limits. The optional arrow argument takes the same values
as in the draw command (see [arrows], page 14). The axis is drawn before any existing
objects in pic unless above=true. The tick type is specified by ticks and the axis
placement is determined by one of the following axis types:

XZero(bool extend=true)
Request a y axis at x=0 (or z=1 on a logarithmic axis) extending to the
full dimensions of the picture, unless extend=false.

Chapter 8: Base modules 101

XEquals(real X, bool extend=true)
Request a y axis at =X extending to the full dimensions of the picture,
unless extend=false.

Left (bool extend=false)
Request a left axis.

Right (bool extend=false)
Request a right axis.

LeftRight (bool extend=false)
Request a left and right axis.

e For convenience, the functions

void xequals(picture pic=currentpicture, Label L="", real x,
bool extend=false, real ymin=-infinity, real ymax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool above=true,
arrowbar arrow=None) ;

and

void yequals(picture pic=currentpicture, Label L="", real vy,
bool extend=false, real xmin=-infinity, real xmax=infinity,
pen p=currentpen, ticks ticks=NoTicks, bool above=true,
arrowbar arrow=None);

can be respectively used to call yaxis and xaxis with the appropriate axis types
XEquals(x,extend) and YEquals(y,extend). This is the recommended way of draw-
ing vertical or horizontal lines and axes at arbitrary locations.

void axes(picture pic=currentpicture, Label xlabel="", Label ylabel="",
bool extend=true,
pair min=(-infinity,-infinity), pair max=(infinity,infinity),
pen p=currentpen, arrowbar arrow=None, bool above=false);
This convenience routine draws both x and y axes on picture pic from min to max,
with optional labels x1label and ylabel and any arrows specified by arrow. The axes
are drawn on top of existing objects in pic only if above=true.

void axis(picture pic=currentpicture, Label L="", path g,
pen p=currentpen, ticks ticks, ticklocate locate,
arrowbar arrow=None, int[] divisor=new int[],
bool above=false, bool opposite=false);

This routine can be used to draw on picture pic a general axis based on an arbitrary
path g, using pen p. One can optionally label the axis with Label L and add an arrow
arrow. The tick type is given by ticks. The optional integer array divisor specifies
what tick divisors to try in the attempt to produce uncrowded tick labels. A true
value for the flag opposite identifies an unlabelled secondary axis (typically drawn
opposite a primary axis). The axis is drawn before any existing objects in pic unless
above=true. The tick locator ticklocate is constructed by the routine

ticklocate ticklocate(real a, real b, autoscaleT S=defaultS$S,

Chapter 8: Base modules 102

real tickmin=-infinity, real tickmax=infinity,
real time(real)=null, pair dir(real)=zero);

where a and b specify the respective tick values at point(g,0) and
point(g,length(g)), S specifies the autoscaling transformation, the func-
tion real time(real v) returns the time corresponding to the value v, and pair
dir(real t) returns the absolute tick direction as a function of t (zero means draw
the tick perpendicular to the axis).

e These routines are useful for manually putting ticks and labels on axes (if the variable
Label is given as the Label argument, the format argument will be used to format a
string based on the tick location):

void xtick(picture pic=currentpicture, Label L="", explicit pair z,
pair dir=N, string format="",
real size=Ticksize, pen p=currentpen);
void xtick(picture pic=currentpicture, Label L="", real x,
pair dir=N, string format="",
real size=Ticksize, pen p=currentpen);
void ytick(picture pic=currentpicture, Label L="", explicit pair z,
pair dir=E, string format="",
real size=Ticksize, pen p=currentpen);
void ytick(picture pic=currentpicture, Label L="", real y,
pair dir=E, string format="",
real size=Ticksize, pen p=currentpen);
void tick(picture pic=currentpicture, pair z,
pair dir, real size=Ticksize, pen p=currentpen);
void labelx(picture pic=currentpicture, Label L="", explicit pair z,
align align=S, string format="", pen p=currentpen);
void labelx(picture pic=currentpicture, Label L="", real x,
align align=S, string format="", pen p=currentpen);
void labelx(picture pic=currentpicture, Label L,
string format="", explicit pen p=currentpen) ;
void labely(picture pic=currentpicture, Label L="", explicit pair z,
align align=W, string format="", pen p=currentpen);
void labely(picture pic=currentpicture, Label L="", real vy,
align align=W, string format="", pen p=currentpen);
void labely(picture pic=currentpicture, Label L,
string format="", explicit pen p=currentpen);

Here are some simple examples of two-dimensional graphs:
1. This example draws a textbook-style graph of y = exp(z), with the y axis starting at
y =0
import graph;
size(150,0);

real f(real x) {return exp(x);}
pair F(real x) {return (x,f(x));}

Chapter 8: Base modules 103

xaxis("x");
yaxis ("y",0);

draw(graph(f,-4,2,operator ..),red);

labely(1,E);
label("$e"x$",F(1),SE);

i

2. The next example draws a scientific-style graph with a legend. The position of the
legend can be adjusted either explicitly or by using the graphical user interface xasy (see
Chapter 11 [GUI], page 166). If an UnFill(real xmargin=0, real ymargin=xmargin)
or Fill (pen) option is specified to add, the legend will obscure any underlying objects.
Here we illustrate how to clip the portion of the picture covered by a label:

import graph;
size (400,200, IgnoreAspect) ;

real Sin(real t) {return sin(2pix*t);}
real Cos(real t) {return cos(2pixt);}

draw(graph(Sin,0,1) ,red,"$\sin(2\pi x)$");
draw(graph(Cos,0,1) ,blue,"$\cos(2\pi x)$");

xaxis ("x" ,BottomTop,LeftTicks);
yaxis("y",LeftRight ,RightTicks(trailingzero));

label ("LABEL" ,point (0) ,UnFill(1mm));

add(legend () ,point (E) ,20E,UnFill);

Chapter 8: Base modules 104

1.0

0.5

sin(27mx)

Y : LABEL
0.0 cos(2mx)

—0.5

—-1.0
0 0.2 0.4 0.6 0.8

—_

To specify a fixed size for the graph proper, use attach:
import graph;

size (250,200, IgnoreAspect) ;

real Sin(real t) {return sin(2pix*t);}
real Cos(real t) {return cos(2pixt);}

draw(graph(Sin,0,1) ,red,"$\sin(2\pi x)$");
draw(graph(Cos,0,1) ,blue,"$\cos(2\pi x)$");

xaxis("x" ,BottomTop,LeftTicks) ;
yaxis ("y",LeftRight ,RightTicks(trailingzero));

label ("LABEL",point(0) ,UnFill(1mm));

attach(legend() ,truepoint(E),20E,UnFill);
A legend can have multiple entries per line:

import graph;
size(8cm,6cm, IgnoreAspect) ;

typedef real realfcn(real);
realfcn F(real p) {
return new real(real x) {return sin(p#*x);};

};

for(int i=1; i < 5; ++i)
draw(graph (F (i*pi),0,1),Pen(i),
"$\sin("+(1i == 1 7 "" : (string) 1D)+"\pi x)$");
xaxis("x",BottomTop,LeftTicks);
yaxis("y",LeftRight,RightTicks(trailingzero));

Chapter 8: Base modules 105

attach(legend(2), (point(S) .x,truepoint(S).y),10S,UnFill);

1.0 -

0.5

v 0.0}
—0.5F .
—~1.0 - Ll N A]
0 0.2 0.4 0.6 0.8 1
T
sin(mx) ———sin(27x)

sin(3mx)

3. This example draws a graph of one array versus another (both of the same size) using
custom tick locations and a smaller font size for the tick labels on the y axis.

import graph;
size (200,150, IgnoreAspect) ;

real[] X={O;1’2,3};
reall]l y=x"2;

draw(graph(x,y) ,red) ;
xaxis ("x" ,BottomTop,LeftTicks);

yaxis ("y" ,LeftRight,
RightTicks(Label (fontsize(8pt)) ,new reall[]1{0,4,9}));

Chapter 8: Base modules 106

X

4. This example shows how to graph columns of data read from a file.
import graph;
size (200,150, IgnoreAspect) ;
file in=input("filegraph.dat").line();
real[][] a=in.dimension(0,0);

a=transpose(a) ;

real[] x=al[0];
reall] y=alill;

draw(graph(x,y) ,red);

xaxis ("x" ,BottomTop,LeftTicks);
yaxis ("y" ,LeftRight,RightTicks);

O 1 I 1 I 1 I 1
20 70 90 110
x

5. The next example draws two graphs of an array of coordinate pairs, using frame align-
ment and data markers. In the left-hand graph, the markers, constructed with

marker marker(path g, markroutine markroutine=marknodes,
pen p=currentpen, filltype filltype=NoFill,
bool above=true);

Chapter 8: Base modules 107

using the path unitcircle (see [filltype], page 49), are drawn below each node. Any
frame can be converted to a marker, using

marker marker (frame f, markroutine markroutine=marknodes,
bool above=true);

In the right-hand graph, the unit n-sided regular polygon polygon(int n) and
the unit n-point cyclic cross cross(int n, bool round=true, real r=0) (where
r is an optional “inner” radius) are used to build a custom marker frame. Here
markuniform(bool centered=false, int n, bool rotated=false) adds this frame
at n uniformly spaced points along the arclength of the path, optionally rotated by the
angle of the local tangent to the path (if centered is true, the frames will be centered
within n evenly spaced arclength intervals). Alternatively, one can use markroutine
marknodes to request that the marks be placed at each Bezier node of the path, or
markroutine markuniform(pair z(real t), real a, real b, int n) to place marks
at points z(t) for n evenly spaced values of t in [a,b].

These markers are predefined:

marker [] Mark={
marker (scale(circlescale)*unitcircle),
marker (polygon(3)) ,marker(polygon(4)),
marker (polygon(5)) ,marker (invert*polygon(3)),
marker (cross(4)) ,marker (cross(6))

};

marker [] MarkFill={
marker (scale(circlescale)*unitcircle,Fill) ,marker (polygon(3),Fill),
marker (polygon(4) ,Fill) ,marker (polygon(5),Fill),
marker (invert*polygon(3) ,Fill)

};

The example also illustrates the errorbar routines:

void errorbars(picture pic=currentpicture, pair[] z, pair[] dp,
pair[] dm={}, bool[] cond={}, pen p=currentpen,
real size=0);

void errorbars(picture pic=currentpicture, reall] x, reall] y,
real[] dpx, reall] dpy, reall] dmx={}, reall] dmy={},
bool[] cond={}, pen p=currentpen, real size=0);
Here, the positive and negative extents of the error are given by the absolute values of
the elements of the pair array dp and the optional pair array dm. If dm is not specified,
the positive and negative extents of the error are assumed to be equal.

import graph;
picture pic;
real xsize=200, ysize=140;

size(pic,xsize,ysize,IgnoreAspect);

pair[] £={(5,5),(50,20),(90,90)};

Chapter 8: Base modules 108

pair[] df={(0,0),(5,7),(0,5)};
errorbars(pic,f,df,red);
draw(pic,graph(pic,f),"legend",

marker (scale(0.8mm)*unitcircle,red,FillDraw(blue) ,above=false));
scale(pic,true);
xaxis(pic,"x" ,BottomTop,LeftTicks);
yaxis(pic,"y",LeftRight,RightTicks);
add(pic,legend(pic),point(pic,NW),20SE,UnFill);

picture pic2;
size(pic2,xsize,ysize,IgnoreAspect);

frame mark;
filldraw(mark,scale(0.8mm)*polygon(6) ,green,green) ;
draw(mark,scale(0.8mm)*cross(6) ,blue) ;
draw(pic2,graph(pic2,f) ,marker (mark,markuniform(5)));

scale(pic2,true);

xaxis(pic2,"x" ,BottomTop,LeftTicks);
yaxis(pic2,"y",LeftRight ,RightTicks);

yequals(pic2,55.0,red+Dotted) ;
xequals(pic2,70.0,red+Dotted) ;

// Fit pic to W of origin:
add(pic.fit(), (0,0),W);

// Fit pic2 to E of (5mm,0):
add(pic2.fit (), (5mm,0) ,E);

Chapter 8: Base modules 109

100 ——T——7T——T—T1— 100 — : - ! -
80 - f - 80 :
. | ——e——legend i,
60 - . 60
y L 1y
40 - . 40
20 - . 20
0 i 1 I 1 I 1 I 1 I 1 | O
0 20 40 60 80 100

X

6. A custom mark routine can be also be specified:

import graph;
size (200,100, IgnoreAspect) ;

markroutine marks() {
return new void(picture pic=currentpicture, frame f, path g) {
path p=scale(lmm)*unitcircle;
for(int i=0; i <= length(g); ++i) {
pair z=point(g,i);
frame f;
if(i % 4 ==0) {
£i11(f,p);
add(pic,f,z);
} else {
if(z.y > 50) {
pic.add(new void(frame F, transform t) {
path g=shift(t*z)x*p;
unfill(F,q);
draw(F,q);
s
} else {
draw(f,p);
add(pic,f,z);
}

}
};
}
pair[] £={(5,5),(40,20),(55,51),(90,30)%};

draw(graph(f) ,marker (marks()));

scale(true);

Chapter 8: Base modules 110

xaxis("x" ,BottomTop,LeftTicks);
yaxis ("y" ,LeftRight ,RightTicks);

60

40
Y

20

100

7. This example shows how to label an axis with arbitrary strings.

import graph;
size (400,150, IgnoreAspect) ;

real[] x=sequence(12);
real[] y=sin(2pi*x/12);

scale(false);

string[] month={"Jan","Feb","Mar","Apr","May","Jun",
"Julll llAugll llSep" ||0Ct n "NOV" "Decll} .

draw(graph(x,y) ,red,MarkFill[0]);
xaxis(BottomTop,LeftTicks (new string(real x) {

return month[round(x % 12)1;}));
yaxis ("y" ,LeftRight ,RightTicks(4));

1 ' T ' T
0.5 _
) 0 -
—0.5
1 . | . | . | . | 1/
Jan Mar May Jul Sep Nov

8. The next example draws a graph of a parametrized curve. The calls to

xlimits(picture pic=currentpicture, real min=-infinity,

Chapter 8: Base modules 111

real max=infinity, bool crop=NoCrop);

and the analogous function ylimits can be uncommented to set the respective axes
limits for picture pic to the specified min and max values. Alternatively, the function

void limits(picture pic=currentpicture, pair min, pair max, bool crop=NoCrop);

can be used to limit the axes to the box having opposite vertices at the given pairs). Ex-
isting objects in picture pic will be cropped to lie within the given limits if crop=Crop
The function crop(picture pic) can be used to crop a graph to the current graph
limits.

import graph;
size(0,200);

real x(real t) {return cos(2pixt);}
real y(real t) {return sin(2pix*t);}

draw(graph(x,y,0,1));
//1limits((0,-1),(1,0),Crop);

xaxis("x" ,BottomTop,LeftTicks) ;
yaxis ("y",LeftRight ,RightTicks(trailingzero));

The next example illustrates how one can extract a common axis scaling factor.

import graph;

axiscoverage=0.9;
size (200, IgnoreAspect) ;

Chapter 8: Base modules 112

real[] x={-1le-11,1e-11};
real[] y={0,1e6};

real xscale=round(logl0(max(x)));
real yscale=round(logl0(max(y)))-1;

draw(graph(x*10~ (-xscale) ,y*10~ (-yscale)) ,red);

xaxis("$x/10°{"+(string) xscale+"}$",BottomTop,LeftTicks);
yaxis("$y/10"{"+(string) yscale+"}$",LeftRight,RightTicks(trailingzero));

—
e}

y/10°
O N W ks Ot oy N o ©
T I T I T I T I T I T I T I T I T I T
1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1

—0.5 0 0.5
z/1071

I
—_
—_

Axis scaling can be requested and/or automatic selection of the axis limits can be
inhibited with one of these scale routines:

void scale(picture pic=currentpicture, scaleT x, scaleT y);

void scale(picture pic=currentpicture, bool xautoscale=true,
bool yautoscale=xautoscale, bool zautoscale=yautoscale);

This sets the scalings for picture pic. The graph routines accept an optional picture
argument for determining the appropriate scalings to use; if none is given, it uses those
set for currentpicture.

Two frequently used scaling routines Linear and Log are predefined in graph.

All picture coordinates (including those in paths and those given to the label and
limits functions) are always treated as linear (post-scaled) coordinates. Use

pair Scale(picture pic=currentpicture, pair z);
to convert a graph coordinate into a scaled picture coordinate.
The x and y components can be individually scaled using the analogous routines

real ScaleX(picture pic=currentpicture, real x);

Chapter 8: Base modules 113

real ScaleY(picture pic=currentpicture, real y);

The predefined scaling routines can be given two optional boolean arguments:
automin=false and automax=automin. These default to false but can be
respectively set to true to enable automatic selection of "nice" axis minimum and
maximum values. The Linear scaling can also take as optional final arguments a
multiplicative scaling factor and intercept (e.g. for a depth axis, Linear (-1) requests
axis reversal).

For example, to draw a log/log graph of a function, use scale(Log,Log):

import graph;

size (200,200, IgnoreAspect) ;

real f(real t) {return 1/t;}
scale(Log,Log);

draw(graph(f,0.1,10));
//1limits((1,0.1),(10,0.5),Crop);

dot (Label("(3,5)",align=S),Scale((3,5)));

xaxis("x" ,BottomTop,LeftTicks);
yaxis ("y" ,LeftRight ,RightTicks);

101 T T T T TTTT T T T T TTTT

Yy 100

10—1 1 Lol 1 T
1071 10° 10
i

By extending the ticks, one can easily produce a logarithmic grid:

import graph;
size (200,200, IgnoreAspect) ;

Chapter 8: Base modules 114

real f(real t) {return 1/t;}

scale(Log,Log);

draw(graph(f,0.1,10) ,red) ;

pen thin=linewidth(0.5*linewidth());

xaxis ("x" ,BottomTop,LeftTicks(begin=false,end=false,extend=true,
ptick=thin));

yaxis("y",LeftRight ,RightTicks(begin=false,end=false,extend=true,
ptick=thin));

10

Yy 100

107!
1071 10° 10*

One can also specify custom tick locations and formats for logarithmic axes:

import graph;

si1ze (300,175, IgnoreAspect) ;
scale(Log,Log);
draw(graph(identity,5,20));
x1limits(5,20);
ylimits(1,100);
xaxis("M/M_\odot",BottomTop,LeftTicks (DefaultFormat,
new real[] {6,10,12,14,16,18}));
yaxis("$\nu_{\rm upp}$ [Hz]",LeftRight,RightTicks(DefaultFormat));

Chapter 8: Base modules 115

100

10

Vupp [Hz]

1 | | | | L
6 10 12 14 16 18

M/M,

It is easy to draw logarithmic graphs with respect to other bases:

import graph;
size (200, IgnoreAspect) ;

// Base-2 logarithmic scale on y-axis:

real log2(real x) {static real log2=log(2); return log(x)/log2;}
real pow2(real x) {return 2°x;}

scaleT yscale=scaleT(log2,pow2,logarithmic=true);
scale(Linear,yscale);

real f(real x) {return 1+x°2;}
draw(graph(f,-4,4));

yaxis("y" ,ymin=1,ymax=£f (5) ,RightTicks(Label (Fill(white))) ,EndArrow) ;
xaxis ("x",xmin=-5,xmax=5,LeftTicks,EndArrow) ;

Chapter 8: Base modules 116

Here is an example of "broken" linear z and logarithmic y axes that omit the segments
[3,8] and [100,1000], respectively. In the case of a logarithmic axis, the break endpoints
are automatically rounded to the nearest integral power of the base.

import graph;
size (200,150, IgnoreAspect) ;

// Break the x axis at 3; restart at 8:
real a=3, b=8;

// Break the y axis at 100; restart at 1000:
real ¢c=100, d=1000;

scale(Broken(a,b) ,BrokenLog(c,d));

real[] x={1,2,4,6,10};
reall]l y=x"4;

draw(graph(x,y) ,red,MarkFill[0]);

xaxis ("x" ,BottomTop,LeftTicks (Break(a,b)));
yaxis ("y" ,LeftRight ,RightTicks(Break(c,d)));

label(rotate(90)*Break, (a,point(S).y));
label(rotate(90) *Break, (a,point (N) .y));
label (Break, (point (W) .x,ScaleY(c)));
label (Break, (point(E) .x,ScaleY(c)));

Chapter 8: Base modules 117

10* g 2 .

A ?
10" £ E
10° ' 2 :

2 10

9. Asymptote can draw secondary axes with the routines

picture secondaryX(picture primary=currentpicture, void f(picture));
picture secondaryY(picture primary=currentpicture, void f(picture));

In this example, secondaryY is used to draw a secondary linear y axis against a primary
logarithmic y axis:

import graph;
texpreamble ("\def\Arg{\mathop {\rm Arg}\nolimits}");

size(10cm,5cm, IgnoreAspect);

real ampl(real x) {return 2.5/sqrt(1+x"2);}
real phas(real x) {return -atan(x)/pi;}

scale(Log,Log);
draw(graph (ampl,0.01,10));
ylimits(0.001,100);

xaxis ("$\omega\tau_0$",BottomTop,LeftTicks) ;
yaxis("$|G(\omega\tau_0) |$",Left,RightTicks);

picture g=secondaryY(new void(picture pic) {
scale(pic,Log,Linear);
draw(pic,graph(pic,phas,0.01,10),red);
ylimits(pic,-1.0,1.5);
yaxis(pic,"$\Arg G/\pi$",Right,red,

LeftTicks("$% #.1£f$",
begin=false,end=false));
yequals(pic,1,Dotted) ;
b;
label(q,"(1,0)",Scale(q,(1,0)),red);
add(q);

Chapter 8: Base modules 118

102 T T IIIIII| T T IIIIII| T T IIIIIL 1,5

g
oy =
5 0.5 &
3 00 2

—0.5

10—3 1 11 IIIIII 1 11 IIIIII 1] 71.0

1072 107! 10° 10
WTo

A secondary logarithmic y axis can be drawn like this:

import graph;

size(9cm,6cm, IgnoreAspect) ;
string data="secondaryaxis.csv";

file in=input(data).line().csv();

string[] titlelabel=in;
string[] columnlabel=in;

real[][] a=in.dimension(0,0);

a=transpose(a);

real[] t=al0], susceptible=al[l], infectious=a[2], dead=a[3], larvae=al4];
real[] susceptibleM=a[b], exposed=al6],infectiousM=al[7];

scale(true);

draw(graph(t,susceptible,t >= 10 & t <= 15));
draw(graph(t,dead,t >= 10 & t <= 15),dashed);

xaxis("Time (τ)",BottomTop,LeftTicks);
yaxis(Left,RightTicks) ;

picture secondary=secondaryY(new void(picture pic) {
scale(pic,Linear(true) ,Log(true));
draw(pic,graph(pic,t,infectious,t >= 10 & t <= 15),red);
yaxis(pic,Right,red,LeftTicks(begin=false,end=false));
b;

add (secondary) ;
label(shift (5mm*N)*"Proportion of crows",point(NW),E);

Chapter 8: Base modules

Proportion of crows

0.9 — T . —
0.7F
0.5_— < = =
0.3_— /////
0.1://.//| P R I B

10 11 12 13 14

10. Here is a histogram example, which uses the stats module.

import graph;
import stats;

size (400,200, IgnoreAspect) ;
int n=10000;
real[] a=new realln];

for(int i=0; i < n; ++i) al[il=Gaussrand();

draw(graph (Gaussian,min(a) ,max(a)),blue);

// Optionally calculate "optimal" number of bins a la Shimazaki and Shinomoto.

int N=bins(a);

histogram(a,min(a) ,max(a),N,normalize=true,low=0,lightred,black,bars=false);

xaxis ("x" ,BottomTop,LeftTicks);
yaxis("dP/dx" ,LeftRight ,RightTicks(trailingzero));

10°

1071

1072

15

119

Chapter 8: Base modules 120

0.4

0.1

0.0

-3 -2 —1 0 1 2 3
x

11. Here is an example of reading column data in from a file and a least-squares fit, using
the stats module.

size (400,200, IgnoreAspect) ;

import graph;
import stats;

file fin=input("leastsquares.dat").line();

real[][] a=fin.dimension(0,0);
a=transpose(a) ;

real[] t=a[0], rho=all]l;

// Read in parameters from the keyboard:
//real first=getreal("first");

//real step=getreal("step");

//real last=getreal("last");

real first=100;

real step=50;

real last=700;

// Remove negative or zero values of rho:
t=rho > 0 7?7 t : null;

rho=rho > 0 ? rho : null;
scale(Log(true) ,Linear (true));

int n=step > 0 ? ceil((last-first)/step) : O;

real[] T,xi,dxi;

Chapter 8: Base modules

for(int i=0; i <= n; ++i) {
real first=first+i*step;
real[] logrho=(t >= first & t <= last) ? log(rho) : null;
real[] logt=(t >= first & t <= last) ? -log(t) : null;

if (logt.length < 2) break;

// Fit to the line logt=L.m*logrho+L.b:
linefit L=leastsquares(logt,logrho);

T.push(first);

xi.push(L.m);
dxi.push(L.dm);

draw(graph(T,xi) ,blue);
errorbars(T,xi,dxi,red);
crop();

ylimits(0);

xaxis("T" ,BottomTop,LeftTicks);
yaxis ("ξ" ,LeftRight,RightTicks);

121

0
10?

T

12. Here is an example that illustrates the general axis routine.
import graph;
size(0,100);

103

Chapter 8: Base modules 122

path g=ellipse((0,0),1,2);
scale(true);

axis(Label("C",align=10W),g,LeftTicks(endlabel=false,8,end=false),
ticklocate(0,360,new real(real v) {
path h=(0,0)--max (abs (max(g)),abs(min(g)))*dir(v);
return intersect(g,h)[0];}));

90
135 45
C 180 0
225 315
270

13. To draw a vector field of n arrows evenly spaced along the arclength of a path, use the
routine

picture vectorfield(path vector(real), path g, int n, bool truesize=false,
pen p=currentpen, arrowbar arrow=Arrow);

as illustrated in this simple example of a flow field:

import graph;
defaultpen(1.0);

size(0,150,IgnoreAspect) ;

real arrowsize=4mm;
real arrowlength=2arrowsize;

typedef path vector(real);

// Return a vector interpolated linearly between a and b.
vector vector(pair a, pair b) {
return new path(real x) {
return (0,0)--arrowlength*interp(a,b,x);
3
}

real f(real x) {return 1/x;}

real epsilon=0.5;
path g=graph(f,epsilon,1/epsilon);

Chapter 8: Base modules 123

int n=3;
draw(g) ;
xaxis("x");
yaxis("y");

add(vectorfield(vector(W,W),g,n,true));
add(vectorfield(vector (NE,NW), (0,0)--(point(E) .x,0) ,n,true));
add (vectorfield(vector (NE,NE), (0,0)--(0,point(N) .y) ,n,true));

qrs

R4

N

e

14. To draw a vector field of nxxny arrows in box(a,b), use the routine

picture vectorfield(path vector(pair), pair a, pair b,
int nx=nmesh, int ny=nx, bool truesize=false,
real maxlength=truesize 7 0 : maxlength(a,b,nx,ny),
bool cond(pair z)=null, pen p=currentpen,
arrowbar arrow=Arrow, margin margin=PenMargin)

as illustrated in this example:
import graph;

size(100);

pair a=(0,0);
pair b=(2pi,2pi);

path vector(pair z) {return (0,0)--(sin(z.x),cos(z.y));}

add (vectorfield(vector,a,b));

Chapter 8: Base modules 124

AAAERNNNXN
AAAENNN

P A N N

A AN & e e

t 7

L

VNN A
PN NN Y
VNN A
L
t 7

AAAENXNX

'
t
'
/
'
'
AATENNNN

PV I NA N NI U B 4

15. The following scientific graphs, which illustrate many features of Asymptote’s graphics
routines, were generated from the examples diatom.asy and westnile.asy, using the
comma-separated data in diatom.csv and westnile.csv.

Chapter 8: Base modules 125

1998
1994
1990
1986

100 1984 1989

200

1942
1920
1910

300

sediment depth (cm)

400

50 50 50 40 50 40 40 10 8
%

1.0

09 P AT . 1 Estimate
i : ion of
0.8 3. Determine proportion o

desired bird birds surviving
0.7 B survival for at end of season

0.6 next season

05 F_________ - 2. Read off
0.4 4. Calc.ulate initial

L required : mosquito
0.3 = proportional : abundance
09 reduction in

mosquitoes
0.1

00 1 | 1 | 1| | 1
0 10 My, 20 M; 30 40

Initial no. of mosquitoes per bird (Sy,/Np,)

Susceptible bird survival

Chapter 8: Base modules 126

8.28 palette

Asymptote can also generate color density images and palettes. The following palettes are
predefined in palette.asy:

pen[] Grayscale(int NColors=256)
a grayscale palette;

pen[] Rainbow(int NColors=32766)
a rainbow spectrum;

pen[] BWRainbow(int NColors=32761)
a rainbow spectrum tapering off to black/white at the ends;

pen[] BWRainbow2(int NColors=32761)
a double rainbow palette tapering off to black/white at the ends, with a linearly
scaled intensity.

pen[] Wheel (int NColors=32766)
a full color wheel palette;

pen[] Gradient (int NColors=256 ... penl[] p)
a palette varying linearly over the specified array of pens, using NColors in each
interpolation interval;

The function cmyk (pen[] Palette) may be used to convert any of these palettes to the
CMYK colorspace.

A color density plot using palette palette can be generated from a function f(z,y) and
added to a picture pic:

bounds image(picture pic=currentpicture, real f(real, real),
range range=Full, pair initial, pair final,
int nx=ngraph, int ny=nx, pen[] palette, bool antialias=false)
The function £ will be sampled at nx and ny evenly spaced points over a rectangle defined
by the points initial and final, respecting the current graphical scaling of pic. The color
space is scaled according to the z axis scaling (see [automatic scaling], page 112). A bounds
structure for the function values is returned:

struct bounds {
real min;
real max;
// Possible tick intervals:
int[] divisor;

¥

This information can be used for generating an optional palette bar. The palette color
space corresponds to a range of values specified by the argument range, which can be Full,
Automatic, or an explicit range Range (real min, real max). Here Full specifies a range
varying from the minimum to maximum values of the function over the sampling interval,
while Automatic selects "nice" limits. The example imagecontour.asy illustrates how
level sets (contour lines) can be drawn on a color density plot (see Section 8.36 [contour],
page 153).
A color density plot can also be generated from an explicit real[][] array data:

Chapter 8: Base modules 127

bounds image(picture pic=currentpicture, real[][] f, range range=Full,
pair initial, pair final, pen[] palette,
bool transpose=(initial.x < final.x && initial.y < final.y),
bool copy=true, bool antialias=false);

If the initial point is to the left and below the final point, by default the array indices are
interpreted according to the Cartesian convention (first index: z, second index: y) rather
than the usual matrix convention (first index: —y, second index: x).

To construct an image from an array of irregularly spaced points and an array of values
f at these points, use one of the routines

bounds image(picture pic=currentpicture, pairl[] z, reall] f£,
range range=Full, pen[] palette)

bounds image(picture pic=currentpicture, reall[] x, reall] y, reall] f,
range range=Full, pen[] palette)

An optionally labelled palette bar may be generated with the routine

void palette(picture pic=currentpicture, Label L="", bounds bounds,
pair initial, pair final, axis axis=Right, pen[] palette,
pen p=currentpen, paletteticks ticks=PaletteTicks,
bool copy=true, bool antialias=false);

The color space of palette is taken to be over bounds bounds with scaling given by the
z scaling of pic. The palette orientation is specified by axis, which may be one of Right,
Left, Top, or Bottom. The bar is drawn over the rectangle from initial to final. The
argument paletteticks is a special tick type (see [ticks], page 99) that takes the following
arguments:
paletteticks PaletteTicks(Label format="", ticklabel ticklabel=null,
bool beginlabel=true, bool endlabel=true,
int N=0, int n=0, real Step=0, real step=0,
pen pTick=nullpen, pen ptick=nullpen);
The image and palette bar can be fit to a frame and added and optionally aligned to a
picture at the desired location:

size(12cm,12cm) ;

import graph;
import palette;

int n=256;
real ninv=2pi/n;
real[] [] v=new realln][n];
for(int i=0; i < n; ++i)
for(int j=0; j < n; ++j)
v[i] [jl=sin(i*ninv)*cos(j*ninv) ;

pen[] Palette=BWRainbow();

picture bar;

Chapter 8: Base modules

bounds range=image (v, (0,0),(1,1),Palette);

palette(bar,"A" ,range, (0,0), (0.5cm,8cm) ,Right ,Palette,
PaletteTicks ("$%+#.1£$"));

add(bar.fit () ,point(E),30E);

+1.0
+0.8
+0.6
+0.4
+0.2

—0.2
—-0.4
—0.6
-0.8

—-1.0

Here is an example that uses logarithmic scaling of the function values:

import graph;
import palette;

size(10cm,10cm,IgnoreAspect) ;
real f(real x, real y) {
return 0.9%powl0(2*sin(x/5+2*%y~0.25)) + 0.1*(1+cos(10*1log(y)));
}
scale(Linear,Log,Log);
pen[] Palette=BWRainbow();

bounds range=image(f,Automatic, (0,1),(100,100),nx=200,Palette);

xaxis("x" ,BottomTop,LeftTicks,above=true) ;
yaxis("y",LeftRight ,RightTicks,above=true);

palette("$£f(x,y)$",range, (0,200), (100,250) ,Top,Palette,

0.0 A

128

Chapter 8: Base modules 129

PaletteTicks(ptick=linewidth(0.5%1linewidth())));

0 20 40 60 80 100
x

One can also draw an image directly from a two-dimensional pen array or a function pen
f(int, int):
void image(picture pic=currentpicture, pen[][] data,
pair initial, pair final,
bool transpose=(initial.x < final.x && initial.y < final.y),
bool copy=true, bool antialias=false);
void image(picture pic=currentpicture, pen f(int, int), int width, int height,
pair initial, pair final,
bool transpose=(initial.x < final.x && initial.y < final.y),
bool antialias=false);

as illustrated in the following examples:
size (200);

import palette;
int n=256;

real ninv=2pi/n;
pen[][] v=new pen[n][n];

Chapter 8: Base modules 130

for(int i=0; i < n; ++i)
for(int j=0; j < n; ++j)
v[i] [j1=rgb(0.5%(1+sin(i*ninv)),0.5%(1+cos(j*ninv)),0);

image (v, (0,0),(1,1));

import palette;
size (200);
real fracpart(real x) {return (x-floor(x));}

pair pws(pair z) {
pair w=(z+exp(pi*I/5)/0.9)/(1+z/0.9*exp(-pi*I1/5));
return exp(w)*(w~3-0.5%I);

}

int N=512;

pair a=(-1,-1);
pair b=(0.5,0.5);
real dx=(b-a).x/N;
real dy=(b-a).y/N;

pen f(int u, int v) {
pair z=a+(uxdx,vxdy);
pair w=pws(z);
real phase=degrees(w,warn=false);
real modulus=w == 0 ? 0: fracpart(log(abs(w)));

Chapter 8: Base modules 131

return hsv(phase,1,sqrt(modulus));

}

image(f,N,N, (0,0), (300,300) ,antialias=true);

For convenience, the module palette also defines functions that may be used to con-
struct a pen array from a given function and palette:

penl[] palette(reall] f, pen[] palette);
penl] [1 palette(reall]l[] f, pen[] palette);

8.29 three

This module fully extends the notion of guides and paths in Asymptote to three dimensions.
It introduces the new types guide3, path3, and surface. Guides in three dimensions are
specified with the same syntax as in two dimensions except that triples (x,y,z) are used
in place of pairs (x,y) for the nodes and direction specifiers. This generalization of John
Hobby’s spline algorithm is shape-invariant under three-dimensional rotation, scaling, and
shifting, and reduces in the planar case to the two-dimensional algorithm used in Asymptote,
MetaPost, and MetaFont [cf. J. C. Bowman, Proceedings in Applied Mathematics and
Mechanics, 7:1, 2010021-2010022 (2007)].

For example, a unit circle in the XY plane may be filled and drawn like this:

import three;
size(100);

path3 g=(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle;
draw(g) ;

draw(0--Z,red+dashed, Arrow3) ;
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
dot(g,red);

Chapter 8: Base modules 132

<>

and then distorted into a saddle:

import three;

size(100,0);

path3 g=(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle;
draw(g);
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
dot(g,red);

Module three provides constructors for converting two-dimensional paths to three-
dimensional ones, and vice-versa:

path3 path3(path p, triple plane(pair)=XYplane);
path path(path3 p, pair P(triple)=xypart);

A Bezier surface, the natural two-dimensional generalization of Bezier curves, is defined
in three_surface.asy as a structure containing an array of Bezier patches. Surfaces may
drawn with one of the routines

void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
material surfacepen=currentpen, pen meshpen=nullpen,
light light=currentlight, light meshlight=nolight, string name="",
render render=defaultrender);

void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
material [] surfacepen, pen meshpen,
light light=currentlight, light meshlight=nolight, string name="",
render render=defaultrender);

void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
material[] surfacepen, pen[] meshpen=nullpens,
light light=currentlight, light meshlight=nolight, string name="",
render render=defaultrender);

The parameters nu and nv specify the number of subdivisions for drawing optional mesh
lines for each Bezier patch. The optional name parameter is used as a prefix for naming
the surface patches in the PRC model tree. Here material is a structure defined in three_
light.asy:
struct material {

penl]l p; // diffusepen,ambientpen,emissivepen,specularpen

Chapter 8: Base modules 133

real opacity;
real shininess;

¥

These material properties are used to implement OpenGL-style lighting, based on the
Phong-Blinn specular model. Sample Bezier surfaces are contained in the example files
BezierSurface.asy, teapot.asy, and parametricsurface.asy. The structure render
contains specialized rendering options documented at the beginning of module three.asy.

The examples elevation.asy and sphericalharmonic.asy illustrate how to draw a
surface with patch-dependent colors. The examples vertexshading and smoothelevation
illustrate vertex-dependent colors, which is supported for both Asymptote’s native OpenGL
renderer and two-dimensional projections. Since the PRC output format does not currently
support vertex shading of Bezier surfaces, PRC patches are shaded with the mean of the
four vertex colors.

A surface can be constructed from a cyclic path3 with the constructor

surface surface(path3 external, triple[] internal=new triplel],
triple[] normals=new triple[], pen[] colors=new penl],
bool3 planar=default);

and then filled:

draw(surface (path3(polygon(5))),red,nolight);
draw(surface(unitcircle3),red,nolight);
draw(surface(unitcircle3,new pen[] {red,green,blue,black}),nolight);

The last example constructs a patch with vertex-specific colors. A three-dimensional planar
surface in the plane plane can be constructed from a two-dimensional cyclic path g with
the constructor

surface surface(path p, triple plane(pair)=XYplane);
and then filled:
draw(surface((0,0)--E+2N--2E--E+N..0.2E. .cycle) ,red) ;

Planar Bezier surfaces patches are constructed using Orest Shardt’s bezulate routine,
which decomposes (possibly nonsimply connected) regions bounded (according to the
zerowinding fill rule) by simple cyclic paths (intersecting only at the endpoints) into
subregions bounded by cyclic paths of length 4 or less.

A more efficient routine also exists for drawing tessellations composed of many 3D tri-
angles, with specified vertices, and optional normals or vertex colors:

void draw(picture pic=currentpicture, triplel[] v, int[]1[] vi,
triple[] n={}, int[][] ni={}, material m=currentpen, pen[] p={},
int[]1[] pi={}, light light=currentlight);

Here, the triple array v lists the distinct vertices, while the array vi lists integer arrays of
length 3 containing the indices of v corresponding to the vertices of each triangle. Similarly,
the arguments n and ni contain optional normal data and p and pi contain optional pen
vertex data. An example of this tessellation facility is given in triangles.asy.

Arbitrary thick three-dimensional curves and line caps (which the OpenGL standard does
not require implementations to provide) are constructed with

Chapter 8: Base modules 134

tube tube(path3 p, real width, render render=defaultrender);

this returns a tube structure representing a tube of diameter width centered approximately
on g. The tube structure consists of a surface s and the actual tube center, path3 center.
Drawing thick lines as tubes can be slow to render, especially with the Adobe Reader ren-
derer. The setting thick=false can be used to disable this feature and force all lines to be
drawn with 1linewidth(0) (one pixel wide, regardless of the resolution). By default, mesh
and contour lines in three-dimensions are always drawn thin, unless an explicit line width
is given in the pen parameter or the setting thin is set to false. The pens thin() and
thick() defined in plain_pens.asy can also be used to override these defaults for specific
draw commands.

There are four choices for viewing 3D Asymptote output:

1. Use the native Asymptote adaptive OpenGL-based renderer (with the command-line
option -V and the default settings outformat="" and render=-1). If you encounter
warnings from your graphics card driver, try specifying ~glOptions=-indirect on the
command line. On UNIX systems with graphics support for multisampling, the sample
width can be controlled with the setting multisample. An initial screen position can
be specified with the pair setting position, where negative values are interpreted as
relative to the corresponding maximum screen dimension. The default settings
import settings;
leftbutton=new string[] {"rotate","zoom","shift","pan"};
middlebutton=new string[] {"menu"};
rightbutton=new string[] {"zoom/menu","rotateX","rotateY",'"rotateZ"};
wheelup=new string[] {"zoomin"};
wheeldown=new string[] {"zoomout"};

bind the mouse buttons as follows:
e Left: rotate
e Shift Left: zoom
o Ctrl Left: shift viewport
e Alt Left: pan
e Middle: menu (must be unmodified; ignores Shift, Ctrl, and Alt)
e Wheel Up: zoom in
e Wheel Down: zoom out
e Right: zoom/menu (must be unmodified)
e Right double click: menu
e Shift Right: rotate about the X axis
e Ctrl Right: rotate about the Y axis
e Alt Right: rotate about the Z axis

The keyboard shortcuts are:
e h: home
o f: toggle fitscreen
e x: spin about the X axis

e y: spin about the Y axis

Chapter 8: Base modules 135

e 7z: spin about the Z axis

e s: stop spinning

e m: rendering mode (solid/mesh/patch)
e ¢: export

e c: show camera parameters
e p: play animation

e 1: reverse animation

e : step animation

e +: expand

e —: expand

e >: expand

: shrink

e _: shrink

e <: shrink
e (: exit
o Ctrl-q: exit

2. Render the scene to a specified rasterized format outformat at the resolution of n pixels
per bp, as specified by the setting render=n. A negative value of n is interpreted as
|[2n| for EPS and PDF formats and |n| for other formats. The default value of render
is -1. By default, the scene is internally rendered at twice the specified resolution; this
can be disabled by setting antialias=1. High resolution rendering is done by tiling
the image. If your graphics card allows it, the rendering can be made more efficient
by increasing the maximum tile size maxtile to your screen dimensions (indicated by
maxtile=(0,0). If your video card generates unwanted black stripes in the output,
try setting the horizontal and vertical components of maxtiles to something less than
your screen dimensions. The tile size is also limited by the setting maxviewport, which
restricts the maximum width and height of the viewport. On UNIX systems some
graphics drivers support batch mode (-noV) rendering in an iconified window; this
can be enabled with the setting iconify=true. Some (broken) UNIX graphics drivers
may require the command line setting -glOptions=-indirect, which requests (slower)
indirect rendering.

3. Embed the 3D PRC format in a PDF file and view the resulting PDF file with version
9.0 or later of Adobe Reader. In addition to the default settings.prc=true, this
requires settings.outformat="pdf", which can be specified by the command line op-
tion -f pdf, put in the Asymptote configuration file (see [configuration file], page 162),
or specified in the script before three.asy (or graph3.asy) is imported. The media9
LaTeX package is also required (see Section 8.17 [embed], page 94). The example
pdb.asy illustrates how one can generate a list of predefined views (see 100d.views).
A stationary preview image with a resolution of n pixels per bp can be embedded with
the setting render=n; this allows the file to be viewed with other PDF viewers. Alterna-
tively, the file externalprc.tex illustrates how the resulting PRC and rendered image
files can be extracted and processed in a separate LaTeX file. However, see Chapter 7

Chapter 8: Base modules 136

[LaTeX usage], page 83 for an easier way to embed three-dimensional Asymptote pic-
tures within LaTeX. For specialized applications where only the raw PRC file is re-
quired, specify settings.outformat="prc". The open-source PRC specification is
available from http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/
API_References/PRCReference/PRC_Format_Specification/.

4. Project the scene to a two-dimensional vector (EPS or PDF) format with render=0.
Only limited hidden surface removal facilities are currently available with this approach
(see [PostScript3D], page 142).

Automatic picture sizing in three dimensions is accomplished with double deferred draw-
ing. The maximal desired dimensions of the scene in each of the three dimensions can
optionally be specified with the routine

void size3(picture pic=currentpicture, real x, real y=x, real z=y,
bool keepAspect=pic.keepAspect);

The resulting simplex linear programming problem is then solved to produce a 3D version
of a frame (actually implemented as a 3D picture). The result is then fit with another
application of deferred drawing to the viewport dimensions corresponding to the usual two-
dimensional picture size parameters. The global pair viewportmargin may be used to
add horizontal and vertical margins to the viewport dimensions. Alternatively, a minimum
viewportsize may be specified. A 3D picture pic can be explicitly fit to a 3D frame by
calling

frame pic.fit3(projection P=currentprojection);
and then added to picture dest about position with
void add(picture dest=currentpicture, frame src, triple position=(0,0,0));

For convenience, the three module defines 0=(0,0,0), X=(1,0,0), Y=(0,1,0), and
Z=(0,0,1), along with a unitcircle in the XY plane:

path3 unitcircle3=X..Y..-X..-Y..cycle;

A general (approximate) circle can be drawn perpendicular to the direction normal with
the routine

path3 circle(triple c, real r, triple normal=Z);

A circular arc centered at ¢ with radius r from c+r*dir(thetal,phil) to
c+r*dir (theta2,phi2), drawing counterclockwise relative to the mnormal vector
cross(dir(thetal,phil),dir(theta2,phi2)) if theta2 > thetal or if theta2 ==
thetal and phi2 >= phil, can be constructed with

path3 arc(triple c, real r, real thetal, real phil, real theta2, real phi2,
triple normal=0);

The normal must be explicitly specified if ¢ and the endpoints are colinear. If r < 0,
the complementary arc of radius |r| is constructed. For convenience, an arc centered at ¢
from triple v1 to v2 (assuming |v2-c|=|v1l-c|) in the direction CCW (counter-clockwise)
or CW (clockwise) may also be constructed with

path3 arc(triple c, triple v1, triple v2, triple normal=0,
bool direction=CCW);

When high accuracy is needed, the routines Circle and Arc defined in graph3 may be used
instead. See [GaussianSurface|, page 147 for an example of a three-dimensional circular arc.

http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/
http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/

Chapter 8: Base modules 137

The representation 0--0+u--0+u+v--0+v--cycle of the plane passing through point 0
with normal cross(u,v) is returned by

path3 plane(triple u, triple v, triple 0=0);

A three-dimensional box with opposite vertices at triples vl and v2 may be drawn with
the function

path3[] box(triple v1, triple v2);
For example, a unit box is predefined as
path3[] unitbox=box(0,(1,1,1));

Asymptote also provides optimized definitions for the three-dimensional paths
unitsquare3 and wunitcircle3, along with the surfaces unitdisk, unitplane,
unitcube, unitcylinder, unitcone, unitsolidcone, unitfrustum(real t1, real t2),
unitsphere, and unithemisphere.

These projections to two dimensions are predefined:
oblique

oblique(real angle)
The point (x,y,z) is projected to (x-0.5z,y-0.5z). If an optional real ar-
gument is given, the negative z axis is drawn at this angle in degrees. The
projection obliqueZ is a synonym for oblique.

obliqueX

obliqueX(real angle)
The point (x,y,z) is projected to (y-0.5x,z-0.5x). If an optional real argu-
ment is given, the negative x axis is drawn at this angle in degrees.

obliqueY

obliqueY(real angle)
The point (x,y,z) is projected to (x+0.5y,z+0.5y). If an optional real argu-
ment is given, the positive y axis is drawn at this angle in degrees.

orthographic(triple camera, triple up=Z, triple target=0,

real zoom=1, pair viewportshift=0, bool showtarget=true,

bool center=false)
This projects from three to two dimensions using the view as seen at a point
infinitely far away in the direction unit (camera), orienting the camera so that,
if possible, the vector up points upwards. Parallel lines are projected to parallel
lines. The bounding volume is expanded to include target if showtarget=true.
If center=true, the target will be adjusted to the center of the bounding vol-
ume.

orthographic(real x, real y, real z, triple up=Z, triple target=0,
real zoom=1, pair viewportshift=0, bool showtarget=true,
bool center=false)
This is equivalent to
orthographic((x,y,z) ,up,target,zoom,viewportshift,showtarget,center)

The routine

Chapter 8: Base modules 138

triple camera(real alpha, real beta);

can be used to compute the camera position with the x axis below the horizontal
at angle alpha, the y axis below the horizontal at angle beta, and the z axis

up.

perspective(triple camera, triple up=Z, triple target=0,

real zoom=1, real angle=0, pair viewportshift=0,

bool showtarget=true, bool autoadjust=true,

bool center=autoadjust)
This projects from three to two dimensions, taking account of perspective,
as seen from the location camera looking at target, orienting the
camera so that, if possible, the vector up points upwards. If render=0,
projection of three-dimensional cubic Bezier splines is implemented by
approximating a two-dimensional nonuniform rational B-spline (NURBS) with
a two-dimensional Bezier curve containing additional nodes and control points.
If autoadjust=true, the camera will automatically be adjusted to lie outside
the bounding volume for all possible interactive rotations about target.
If center=true, the target will be adjusted to the center of the bounding
volume.

perspective(real x, real y, real z, triple up=Z, triple target=0,
real zoom=1, real angle=0, pair viewportshift=0,
bool showtarget=true, bool autoadjust=true,
bool center=autoadjust)
This is equivalent to
perspective((x,y,z) ,up,target,zoom,angle,viewportshift,showtarget,
autoadjust,center)

The default projection, currentprojection, is initially set to perspective(5,4,2).
We also define standard orthographic views used in technical drawing;:

projection LeftView=orthographic(-X,showtarget=true);
projection RightView=orthographic(X,showtarget=true);
projection FrontView=orthographic(-Y,showtarget=true);
projection BackView=orthographic(Y,showtarget=true);
projection BottomView=orthographic(-Z,showtarget=true);
projection TopView=orthographic(Z,showtarget=true);
The function

void addViews(picture dest=currentpicture, picture src,

projection[] [] views=SixViewsUS,

bool group=true, filltype filltype=NoFill);
adds to picture dest an array of views of picture src using the layout projection[][] views.
The default layout SixViewsUS aligns the projection FrontView below TopView and above
BottomView, to the right of LeftView and left of RightView and BackView. The predefined
layouts are:

projection[][] ThreeViewsUS={{TopView},
{FrontView,RightView}};

Chapter 8: Base modules 139

projection[] [] SixViewsUS={{null,TopView},
{LeftView,FrontView,RightView,BackView},
{null,BottomViewl}};

projection[] [] ThreeViewsFR={{RightView,FrontView},
{null,TopView}};

projection[] [] SixViewsFR={{null,BottomView},
{RightView,FrontView,LeftView,BackView},
{null,TopView}};

projection[] [] ThreeViews={{FrontView,TopView,RightView}};

projection[] [] SixViews={{FrontView,TopView,RightView},
{BackView,BottomView,LeftView}};

A triple or path3 can be projected to a pair or path, with project (triple, projection
P=currentprojection) or project(path3, projection P=currentprojection).

It is occasionally useful to be able to invert a projection, sending a pair z onto the plane
perpendicular to normal and passing through point:

triple invert(pair z, triple normal, triple point,
projection P=currentprojection);

A pair z on the projection plane can be inverted to a triple with the routine
triple invert(pair z, projection P=currentprojection);

A pair direction dir on the projection plane can be inverted to a triple direction relative
to a point v with the routine

triple invert(pair dir, triple v, projection P=currentprojection).
Three-dimensional objects may be transformed with one of the following built-in trans-
form3 types (the identity transformation is identity4):

shift(triple v)
translates by the triple v;

xscale3(real x)
scales by x in the z direction;

yscale3(real y)
scales by y in the y direction;

zscale3(real z)
scales by z in the z direction;

scale3(real s)
scales by s in the z, y, and z directions;

scale(real x, real y, real z)
scales by x in the z direction, by y in the y direction, and by z in the z direction;

Chapter 8: Base modules 140

rotate(real angle, triple v)
rotates by angle in degrees about an axis v through the origin;

rotate(real angle, triple u, triple v)
rotates by angle in degrees about the axis u--v;

reflect(triple u, triple v, triple w)
reflects about the plane through u, v, and w.

When not multiplied on the left by a transform3, three-dimensional TEX Labels are
drawn as Bezier surfaces directly on the projection plane:

void label(picture pic=currentpicture, Label L, triple position,
align align=NoAlign, pen p=currentpen,
light light=nolight, string name="",
render render=defaultrender, interaction interaction=
settings.autobillboard 7 Billboard : Embedded)

The optional name parameter is used as a prefix for naming the label patches in the PRC
model tree. The default interaction is Billboard, which means that labels are rotated
interactively so that they always face the camera. The interaction Embedded means that
the label interacts as a normal 3D surface, as illustrated in the example billboard.asy.
Alternatively, a label can be transformed from the XY plane by an explicit transform3 or
mapped to a specified two-dimensional plane with the predefined transform3 types XY, YZ,
ZX, YX, ZY, ZX. There are also modified versions of these transforms that take an optional
argument projection P=currentprojection that rotate and/or flip the label so that it is
more readable from the initial viewpoint.

A transform3 that projects in the direction dir onto the plane with normal n through
point 0 is returned by

transform3 planeproject(triple n, triple 0=0, triple dir=n);
One can use
triple normal(path3 p);

to find the unit normal vector to a planar three-dimensional path p. As illustrated in the
example planeproject.asy, a transform3 that projects in the direction dir onto the plane
defined by a planar path p is returned by

transform3 planeproject(path3 p, triple dir=normal(p));
The functions

surface extrude(path p, triple axis=Z);
surface extrude(Label L, triple axis=Z);

return the surface obtained by extruding path p or Label L along axis.
Three-dimensional versions of the path functions length, size, point, dir, accel,
radius, precontrol, postcontrol, arclength, arctime, reverse, subpath, intersect,
intersections, intersectionpoint, intersectionpoints, min, max, cyclic, and
straight are also defined.
The routine
real[] intersect(path3 p, surface s, real fuzz=-1);

returns a real array of length 3 containing the intersection times, if any, of a path p with a
surface s. The routine

Chapter 8: Base modules 141

real[][] intersections(path3 p, surface s, real fuzz=-1);

returns all (unless there are infinitey many) intersection times of a path p with a surface s
as a sorted array of real arrays of length 3, and

triple[] intersectionpoints(path3 p, surface s, real fuzz=-1);

returns the corresponding intersection points. Here, the computations are performed to the
absolute error specified by fuzz, or if fuzz < 0, to machine precision. The routine

real orient(triple a, triple b, triple c, triple d);

is a numerically robust computation of dot (cross(a-d,b-d),c-d), which is the determi-
nant
la.x a.y a.z 1]
lb.x b.y b.z 1|
lc.x c.y c.z 1]
ld.x d.y d.z 1|

The routine
real insphere(triple a, triple b, triple c, triple d, triple e);
returns a positive (negative) value if e lies inside (outside) the sphere passing through points
a,b,c,d oriented so that dot(cross(a-d,b-d),c-d) is positive, or zero if all five points
are cospherical. The value returned is the determinant
la.x a.y a.z a.x"2+a.y"2+a.z"2 1|
[b.x b.y b.z b.x"2+b.y " 2+b.z"2 1|

lc.x c.y c.z c.x"2+c.y 2+c.z"2 1|
[d.x d.y d.z d.x"2+d.y"2+d.z"2 1|
le.x e.y e.z e.x"2+e.y " 2+e.z"2 1|

Here is an example showing all five guide3 connectors:

import graph3;

size(200);
currentprojection=orthographic(500,-500,500) ;
triple[] z=new triple[10];

z[0]=(0,100,0); z[1]=(50,0,0); z[2]=(180,0,0);

for(int n=3; n <= 9; ++n)
z[n]=z[n-3]1+(200,0,0);

path3 p=z[0]..z[1]---z[2]::{Y}=z[3]
&z[3]..z[4]--z[5]::{Y}z[6]
&z[6]::z[7]1-——-=[8]. .{Y}=z[9];

draw(p,grey+linewidth(4mm) ,currentlight);

xaxis3(Label (XY()*"x" ,align=-3Y) ,red,above=true) ;

Chapter 8: Base modules 142

yaxis3(Label (XY()*"y",align=-3X) ,red,above=true);

=N

Three-dimensional versions of bars or arrows can be drawn with one of the specifiers
None, Blank, BeginBar3, EndBar3 (or equivalently Bar3), Bars3, BeginArrow3, MidArrow3,
EndArrow3 (or equivalently Arrow3), Arrows3, BeginArcArrow3, EndArcArrow3 (or equiv-
alently ArcArrow3), MidArcArrow3, and ArcArrows3. Three-dimensional bars accept the
optional arguments (real size=0, triple dir=0). If size=0, the default bar length is
used; if dir=0, the bar is drawn perpendicular to the path and the initial viewing direc-
tion. The predefined three-dimensional arrowhead styles are DefaultHead3, HookHead3,
TeXHead3. Versions of the two-dimensional arrowheads lifted to three-dimensional space
and aligned according to the initial viewpoint (or an optionally specified normal vec-
tor) are also defined: DefaultHead2(triple normal=0), HookHead2(triple normal=0),
TeXHead2(triple normal=0). These are illustrated in the example arrows3.asy.

Module three also defines the three-dimensional margins NoMargin3, BeginMargin3,
EndMargin3, Margin3, Margins3, BeginPenMargin2, EndPenMargin2, PenMargin2,
PenMargins?2, BeginPenMargin3, EndPenMargin3, PenMargin3, PenMargins3,
BeginDotMargin3, EndDotMargin3, DotMargin3, DotMargins3, Margin3, and
TrueMargina3.

The routine

void pixel(picture pic=currentpicture, triple v, pen p=currentpen,
real width=1);

can be used to draw on picture pic a pixel of width width at position v using pen p.

Further three-dimensional examples are provided in the files near_earth.asy,
conicurv.asy, and (in the animations subdirectory) cube.asy.

Limited support for projected vector graphics (effectively three-dimensional nonrendered
PostScript) is available with the setting render=0. This currently only works for piecewise
planar surfaces, such as those produced by the parametric surface routines in the graph3
module. Surfaces produced by the solids package will also be properly rendered if the
parameter nslices is sufficiently large.

In the module bsp, hidden surface removal of planar pictures is implemented using a
binary space partition and picture clipping. A planar path is first converted to a structure
face derived from picture. A face may be given to a two-dimensional drawing routine
in place of any picture argument. An array of such faces may then be drawn, removing
hidden surfaces:

Chapter 8: Base modules 143

void add(picture pic=currentpicture, face[] faces,
projection P=currentprojection);

Labels may be projected to two dimensions, using projection P, onto the plane passing
through point 0 with normal cross(u,v) by multiplying it on the left by the transform

transform transform(triple u, triple v, triple 0=0,
projection P=currentprojection);

Here is an example that shows how a binary space partition may be used to draw a
two-dimensional vector graphics projection of three orthogonal intersecting planes:

size(6cm,0);
import bsp;

real u=2.5;
real v=1;

currentprojection=oblique;

path3 y=plane((2u,0,0),(0,2v,0), (-u,-v,0));
path3 l=rotate(90,Z)*rotate(90,Y)*y;
path3 g=rotate(90,X)*rotate(90,Y)*y;

face[] faces;

filldraw(faces.push(y) ,project(y),yellow);
filldraw(faces.push(l) ,project(1l),lightgrey);
filldraw(faces.push(g) ,project(g),green) ;

add(faces);

Chapter 8: Base modules 144

8.30 obj

This module allows one to construct surfaces from simple obj files, as illustrated in the
example files galleon.asy and triceratops.asy.

8.31 graph3

This module implements three-dimensional versions of the functions in graph.asy. To draw
an x axis in three dimensions, use the routine

void xaxis3(picture pic=currentpicture, Label L="", axis axis=YZZero,
real xmin=-infinity, real xmax=infinity, pen p=currentpen,
ticks3 ticks=NoTicks3, arrowbar3 arrow=None, bool above=false);
Analogous routines yaxis and zaxis can be used to draw y and z axes in three dimensions.
There is also a routine for drawing all three axis:

void axes3(picture pic=currentpicture,
Label xlabel="", Label ylabel="", Label zlabel="",
bool extend=false,
triple min=(-infinity,-infinity,-infinity),
triple max=(infinity,infinity,infinity),
pen p=currentpen, arrowbar3 arrow=None) ;
The predefined three-dimensional axis types are

axis YZEquals(real y, real z, triple align=0, bool extend=false);

axis XZEquals(real x, real z, triple align=0, bool extend=false);

axis XYEquals(real x, real y, triple align=0, bool extend=false);

axis YZZero(triple align=0, bool extend=false);

axis XZZero(triple align=0, bool extend=false);

axis XYZero(triple align=0, bool extend=false);

axis Bounds(int type=Both, int type2=Both, triple align=0, bool extend=false);

The optional align parameter to these routines can be used to specify the default axis
and tick label alignments. The Bounds axis accepts two type parameters, each of which
must be one of Min, Max, or Both. These parameters specify which of the four possible
three-dimensional bounding box edges should be drawn.

The three-dimensional tick options are NoTicks3, InTicks, OutTicks, and InOutTicks.
These specify the tick directions for the Bounds axis type; other axis types inherit the
direction that would be used for the Bounds (Min,Min) axis.

Here is an example of a helix and bounding box axes with ticks and axis labels, using
orthographic projection:

import graph3;

size(0,200);
size3(200, IgnoreAspect) ;

currentprojection=orthographic(4,6,3);

real x(real t) {return cos(2pix*t);}
real y(real t) {return sin(2pix*t);}

Chapter 8: Base modules 145

real z(real t) {return t;}

path3 p=graph(x,y,z,0,2.7,0operator ..);
draw(p,Arrow3) ;

scale(true);

xaxis3(XZ()*"x" ,Bounds,red,InTicks(Label,2,2));

yaxis3(YZ() *"y" ,Bounds,red, InTicks(beginlabel=false,Label,2,2));
zaxis3(XZ()*"z" ,Bounds,red,InTicks);

The next example illustrates three-dimensional x, y, and z axes, without autoscaling of
the axis limits:

import graph3;

size(0,200);
51ze3(200, IgnoreAspect) ;

currentprojection=perspective(5,2,2);
scale(Linear,Linear,Log) ;
xaxis3("x",0,1,red,0utTicks(2,2));

yaxis3("y",0,1,red,OutTicks(2,2));
zaxis3("z",1,30,red,OutTicks (beginlabel=false));

Chapter 8: Base modules 146

z _
101
Mr\’
0.5
0.5 I
y

1
T

One can also place ticks along a general three-dimensional axis:

import graph3;
size(0,100);

path3 g=yscale3(2)*unitcircle3;
currentprojection=perspective(10,10,10);

axis(Label("C",position=0,align=15X),g,InTicks(endlabel=false,8,end=false),
ticklocate(0,360,new real(real v) {
path3 h=0--max(abs(max(g)),abs(min(g)))*dir(90,v);
return intersect(g,h) [0];},
new triple(real t) {return cross(dir(g,t),Z);}));

270 225
180
135
315
0
C 45 90

Surface plots of matrices and functions over the region box(a,b) in the XY plane are
also implemented:

surface surface(real[][] f, pair a, pair b, bool[][] cond={});

surface surface(real[][] f, pair a, pair b, splinetype xsplinetype,
splinetype ysplinetype=xsplinetype, bool[][] cond={});

surface surface(realll[] f, reall]l x, realll vy,
splinetype xsplinetype=null, splinetype ysplinetype=xsplinetype,
bool[][] cond={})

Chapter 8: Base modules 147

surface
surface

surface

surface

surface

surface

surface(triple[]1[] f, bool[][] cond={});

surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
bool cond(pair z)=null);

surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
splinetype xsplinetype, splinetype ysplinetype=xsplinetype,
bool cond(pair z)=null);

surface(triple f(pair z), reall] u, reall] v,
splinetype[] usplinetype, splinetypel] vsplinetype=Spline,
bool cond(pair z)=null);

surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
bool cond(pair z)=null);

surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
splinetype[] usplinetype, splinetypel[] vsplinetype=Spline,
bool cond(pair z)=null);

The final two versions draw parametric surfaces for a function f(u,v) over the parameter
space box (a,b), as illustrated in the example parametricsurface.asy. An optional spline-
type Spline may be specified. The boolean array or function cond can be used to control
which surface mesh cells are actually drawn (by default all mesh cells over box(a,b) are
drawn). Surface lighting is illustrated in the example files parametricsurface.asy and
sinc.asy. Lighting can be disabled by setting light=nolight, as in this example of a
Gaussian surface:

import graph3;

size(200,0);

currentprojection=perspective(10,8,4);

real f(pair z) {return 0.5+exp(-abs(z)~2);}

draw((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle);

draw(arc(0.12Z,0.2,90,60,90,25) ,ArcArrow3) ;

surface

s=surface(f,(-1,-1),(1,1) ,nx=5,Spline);

xaxis3(Label ("x") ,red,Arrow3);
yaxis3(Label ("y") ,red,Arrow3);
zaxis3(XYZero(extend=true) ,red,Arrow3) ;

draw(s,lightgray,meshpen=black+thick() ,nolight,render (merge=true));

label("0",0,-Z+Y,red);

Chapter 8: Base modules 148

A mesh can be drawn without surface filling by specifying nullpen for the surfacepen.

A vector field of nuxnv arrows on a parametric surface f over box(a,b) can be drawn
with the routine

picture vectorfield(path3 vector(pair v), triple f(pair z), pair a, pair b,
int nu=nmesh, int nv=nu, bool truesize=false,
real maxlength=truesize 7 0 : maxlength(f,a,b,nu,nv),
bool cond(pair z)=null, pen p=currentpen,
arrowbar3 arrow=Arrow3, margin3 margin=PenMargin3)

as illustrated in the examples vectorfield3.asy and vectorfieldsphere.asy.

8.32 grid3

This module, contributed by Philippe Ivaldi, can be used for drawing 3D grids. Here is an
example (further examples can be found in grid3.asy and at http://www.piprime.fr/
files/asymptote/grid3/):

import grid3;

size(8cm,0,IgnoreAspect);
currentprojection=orthographic(0.5,1,0.5);

scale(Linear, Linear, Log);

limits((-2,-2,1),(0,2,100));

grid3(XYZgrid) ;

xaxis3(Label ("x",position=EndPoint,align=S) ,Bounds(Min,Min),
OutTicks());

yaxis3(Label ("y" ,position=EndPoint,align=S) ,Bounds(Min,Min),0utTicks());

zaxis3(Label ("z",position=EndPoint,align=(-1,0.5)) ,Bounds(Min,Min),
OutTicks(beginlabel=false));

http://www.piprime.fr/files/asymptote/grid3/
http://www.piprime.fr/files/asymptote/grid3/

Chapter 8: Base modules 149

8.33 solids

This solid geometry package defines a structure revolution that can be used to fill and
draw surfaces of revolution. The following example uses it to display the outline of a circular
cylinder of radius 1 with axis 0--1.5unit (Y+Z) with perspective projection:

import solids;
size(0,100);

revolution r=cylinder(0,1,1.5,Y+Z);
draw(r,heavygreen) ;

Further illustrations are provided in the example files cylinder.asy, cones.asy,
hyperboloid.asy, and torus.asy.

The structure skeleton contains the three-dimensional wireframe used to visualize a
volume of revolution:

struct skeleton {

Chapter 8: Base modules 150

struct curve {

path3[] front;

path3[] back;
X
// transverse skeleton (perpendicular to axis of revolution)
curve transverse;
// longitudinal skeleton (parallel to axis of revolution)
curve longitudinal;

8.34 tube

This package extends the tube surfaces constructed in three_arrows.asy to arbitrary cross
sections, colors, and spine transformations. The routine

surface tube(path3 g, coloredpath section,
transform T(real)=new transform(real t) {return identity(Q);1},
real corner=1, real relstep=0);

draws a tube along g with cross section section, after applying the transformation T(t)
at relpoint(g,t). The parameter corner controls the number of elementary tubes at the
angular points of g. A nonzero value of relstep specifies a fixed relative time step (in
the sense of relpoint(g,t)) to use in constructing elementary tubes along g. The type
coloredpath is a generalization of path to which a path can be cast:

struct coloredpath
{
path p;
penl] pens(real);
int colortype=coloredSegments;

}

Here p defines the cross section and the method pens(real t) returns an array of pens
(interpreted as a cyclic array) used for shading the tube patches at relpoint(g,t). If
colortype=coloredSegments, the tube patches are filled as if each segment of the section
was colored with the pen returned by pens(t), whereas if colortype=coloredNodes, the
tube components are vertex shaded as if the nodes of the section were colored.

A coloredpath can be constructed with one of the routines:

coloredpath coloredpath(path p, pen[] pens(real),
int colortype=coloredSegments) ;
coloredpath coloredpath(path p, penl[] pens=new pen[] {currentpen},
int colortype=coloredSegments) ;
coloredpath coloredpath(path p, pen pen(real));

In the second case, the pens are independent of the relative time. In the third case, the
array of pens contains only one pen, which depends of the relative time.

The casting of path to coloredpath allows the use of a path instead of a coloredpath;
in this case the shading behaviour is the default shading behavior for a surface.

An example of tube is provided in the file trefoilknot.asy. Further examples can be
found at http://wuw.piprime.fr/files/asymptote/tube/.

http://www.piprime.fr/files/asymptote/tube/

Chapter 8: Base modules 151

8.35 flowchart

This package provides routines for drawing flowcharts. The primary structure is a block,
which represents a single block on the flowchart. The following eight functions return a
position on the appropriate edge of the block, given picture transform t:

pair block.top(transform t=identity());

pair block.left(transform t=identity());

pair block.right(transform t=identity());

pair block.bottom(transform t=identity());

pair block.topleft(transform t=identity());
pair block.topright(transform t=identity());
pair block.bottomleft(transform t=identity());
pair block.bottomright(transform t=identity());

To obtain an arbitrary position along the boundary of the block in user coordinates, use:
pair block.position(real x, transform t=identity());

The center of the block in user coordinates is stored in block.center and the block size in
PostScript coordinates is given by block.size.

A frame containing the block is returned by
frame block.draw(pen p=currentpen);

The following block generation routines accept a Label, string, or frame for their object
argument:

rectangular block with an optional header (and padding dx around header and body):

block rectangle(object header, object body, pair center=(0,0),
pen headerpen=mediumgray, pen bodypen=invisible,
pen drawpen=currentpen,
real dx=3, real minheaderwidth=minblockwidth,
real minheaderheight=minblockwidth,
real minbodywidth=minblockheight,
real minbodyheight=minblockheight);

block rectangle(object body, pair center=(0,0),
pen fillpen=invisible, pen drawpen=currentpen,
real dx=3, real minwidth=minblockwidth,
real minheight=minblockheight) ;

parallelogram block:
block parallelogram(object body, pair center=(0,0),
pen fillpen=invisible, pen drawpen=currentpen,
real dx=3, real slope=2,
real minwidth=minblockwidth,
real minheight=minblockheight);

diamond-shaped block:
block diamond(object body, pair center=(0,0),
pen fillpen=invisible, pen drawpen=currentpen,
real ds=5, real dw=1,
real height=20, real minwidth=minblockwidth,
real minheight=minblockheight);

Chapter 8: Base modules 152

circular block:
block circle(object body, pair center=(0,0), pen fillpen=invisible,
pen drawpen=currentpen, real dr=3,
real mindiameter=mincirclediameter);

rectangular block with rounded corners:
block roundrectangle(object body, pair center=(0,0),
pen fillpen=invisible, pen drawpen=currentpen,
real ds=5, real dw=0, real minwidth=minblockwidth,
real minheight=minblockheight);

rectangular block with beveled edges:
block bevel(object body, pair center=(0,0), pen fillpen=invisible,
pen drawpen=currentpen, real dh=5, real dw=5,
real minwidth=minblockwidth, real minheight=minblockheight);

To draw paths joining the pairs in point with right-angled lines, use the routine:
path path(pair point[] ... flowdir dir[]);

The entries in dir identify whether successive segments between the pairs specified by point
should be drawn in the Horizontal or Vertical direction.

Here is a simple flowchart example (see also the example controlsystem.asy):
size(0,300);

import flowchart;

block blockl=rectangle(Label("Example",magenta),
pack(Label("Start:" ,heavygreen),"",Label("$A:=0$",blue),
"$B:=1$"),(-0.5,3) ,palegreen,paleblue,red) ;
block block2=diamond(Label("Choice?",blue), (0,2),palegreen,red);
block block3=roundrectangle("Do something",(-1,1));
block block4=bevel("Don’t do something",(1,1));
block blockb=circle("End", (0,0));

draw(blockl);
draw(block?2) ;
draw(block3) ;
draw(block4) ;
draw(block5) ;

add (new void(picture pic, transform t) {
blockconnector operator --=blockconnector(pic,t);
// draw(pic,blockl.right (t)--block2.top(t));
blockl--Right--Down--Arrow--block2;
block2--Label ("Yes",0.5,NW)--Left--Down--Arrow--block3;
block2--Right--Label("No",0.5,NE)--Down--Arrow--block4;
block4--Down--Left-—-Arrow—-block5;
block3--Down--Right--Arrow--block5;

s

Chapter 8: Base modules 153

Example

Start:

=0
1

A:
B :

A A
[Do something} <D0n’t do something>

8.36 contour

This package draws contour lines. To construct contours corresponding to the values in a
real array c for a function f on box(a,b), use the routine

guide[] [] contour(real f(real, real), pair a, pair b,
real[] c, int nx=ngraph, int ny=nx,
interpolate join=operator --, int subsample=1);

The integers nx and ny define the resolution. The default resolution, ngraph x ngraph
(here ngraph defaults to 100) can be increased for greater accuracy. The default interpo-
lation operator is operator -- (linear). Spline interpolation (operator ..) may produce
smoother contours but it can also lead to overshooting. The subsample parameter indicates
the number of interior points that should be used to sample contours within each 1 x 1 box;
the default value of 1 is usually sufficient.

To construct contours for an array of data values on a uniform two-dimensional lattice
on box(a,b), use

guide[] [1 contour(realll[] f, pair a, pair b, realll c,
interpolate join=operator --, int subsample=1);
To construct contours for an array of data values on a nonoverlapping regular mesh
specified by the two-dimensional array z,

guide[][] contour(pair[]l[] z, realll[] f, realll c,
interpolate join=operator --, int subsample=1);

Chapter 8: Base modules 154

To construct contours for an array of values f specified at irregularly positioned points z,
use the routine

guide[] []1 contour(pair[] z, reall] f, reall[]l c, interpolate join=operator --);
The contours themselves can be drawn with one of the routines

void draw(picture pic=currentpicture, Label[] L=new Labell],
guide[][] g, pen p=currentpen);

void draw(picture pic=currentpicture, Label[] L=new Labell[],
guide[][] g, penl] p);

The following simple example draws the contour at value 1 for the function z = 2 + y?2,
which is a unit circle:

import contour;
size(75);

real f(real a, real b) {return a"2+b"2;%}
draw(contour(f, (-1,-1),(1,1) ,new reall[] {1}));

The next example draws and labels multiple contours for the function z = 2% — y? with
the resolution 100 x 100, using a dashed pen for negative contours and a solid pen for
positive (and zero) contours:

import contour;
size(200);

real f(real x, real y) {return x"2-y~2;}
int n=10;

real[] c=new realln];

for(int i=0; i < n; ++i) c[il=(i-n/2)/n;

pen[] p=sequence(new pen(int i) {
return (c[i] >= 0 ? solid : dashed)+fontsize(6pt);
},c.length);

Label[] Labels=sequence(new Label(int i) {
return Label(c[i] != 0 ? (string) c[i] : "",Relative(unitrand()),(0,0),
UnFill(1bp));
},c.length);

Chapter 8: Base modules 155

draw(Labels,contour(f, (-1,-1),(1,1),¢c),p);

The next example illustrates how contour lines can be drawn on color density images:
import graph;
import palette;
import contour;

size(10cm, 10cm, IgnoreAspect) ;

pair a=(0,0);
pair b=(2pi,2pi);

real f(real x, real y) {return cos(x)*sin(y);>}
int N=200;

int Divs=10;

int divs=2;

defaultpen(ibp);

pen Tickpen=black;

pen tickpen=gray+0.5*1linewidth(currentpen) ;
pen[] Palette=BWRainbow();

bounds range=image(f,Automatic,a,b,N,Palette);

// Major contours

real[] Cvals=uniform(range.min,range.max,Divs);
draw(contour(f,a,b,Cvals,N,operator --),Tickpen);

Chapter 8: Base modules 156

// Minor contours

real[] cvals;

for(int i=0; i < Cvals.length-1; ++i)
cvals.append(uniform(Cvals[i],Cvals[i+1],divs) [1:divs]);

draw(contour(f,a,b,cvals,N,operator --),tickpen);

xaxis("x",BottomTop,LeftTicks,above=true);
yaxis("y",LeftRight,RightTicks,above=true);

palette("$f(x,y)$",range,point (NW)+(0,0.5) ,point(NE)+(0,1) ,Top,Palette,
PaletteTicks(N=Divs,n=divs,Tickpen,tickpen));

f(z,y)
~1 —-08-0.6-04-02 0 02 04 06 08 1

Finally, here is an example that illustrates the construction of contours from irregularly
spaced data:

import contour;

size(200);

int n=100;

real f(real a, real b) {return a"2+b"2;}

srand(1);

Chapter 8: Base modules 157

real r() {return 1.1*(rand()/randMax*2-1);}

pair[] points=new pair[n];
real[] values=new real[n];

for(int i=0; i < n; ++i) {
points[i]=(r () ,r();
values[i]=f (points[i] .x,points[i].y);
}

draw(contour(points,values,new real[]{0.25,0.5,1},0operator ..),blue);

In the above example, the contours of irregularly spaced data are constructed by first
creating a triangular mesh from an array z of pairs:

int[][] triangulate(pair([] z);

size (200) ;
int np=100;
pair[] points;

real r() {return 1.2%(rand()/randMax*2-1);}

for(int i=0; i < np; ++i)
points.push((r),r()));

int[] [] trn=triangulate(points);
for(int i=0; i < trn.length; ++i) {

draw(points[trn[i] [0]]--points[trn[i] [11]);
draw(points[trn[i] [1]]--points[trn[i] [2]]);

Chapter 8: Base modules 158

draw(points[trn[i] [2]]--points[trn[i]l [0]]);
}

for(int i=0; i < np; ++i)
dot (points[i],red);

The example Gouraudcontour illustrates how to produce color density images over such
irregular triangular meshes. Asymptote uses a robust version of Paul Bourke’s Delaunay
triangulation algorithm based on the public-domain exact arithmetic predicates written by
Jonathan Shewchuk.

8.37 contour3

This package draws surfaces described as the null space of real-valued functions of (z,v, 2)
or real[][][] matrices. Its usage is illustrated in the example file magnetic.asy.

8.38 slopefield
To draw a slope field for the differential equation dy/dx = f(z,y) (or dy/dz = f(x)), use:

picture slopefield(real f(real,real), pair a, pair b,
int nx=nmesh, int ny=nx,
real tickfactor=0.5, pen p=currentpen,
arrowbar arrow=None);

Here, the points a and b are the lower left and upper right corners of the rectangle in which
the slope field is to be drawn, nx and ny are the respective number of ticks in the x and
y directions, tickfactor is the fraction of the minimum cell dimension to use for drawing
ticks, and p is the pen to use for drawing the slope fields. The return value is a picture that
can be added to currentpicture via the add(picture) command.

The function

path curve(pair c, real f(real,real), pair a, pair b);

Chapter 8: Base modules 159

takes a point (c) and a slope field-defining function f and returns, as a path, the curve
passing through that point. The points a and b represent the rectangular boundaries over
which the curve is interpolated.

Both slopefield and curve alternatively accept a function real f(real) that depends
on x only, as seen in this example:

import slopefield;
size (200);
real func(real x) {return 2x;}

add(slopefield(func, (-3,-3),(3,3),20,Arrow));
draw(curve ((0,0),func, (-3,-3),(3,3)) ,red);

1

> & ¥y oy K s
¥ ¥ K KKK YK
MM N N N N N Y

AR N T U |

[A AR AR AR

[A A AR R A

- 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 a4 4 4 o a
-4 4 4 a4 a4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 a
-4 4 4 a4 4 a4 4 4 4 4 4 4 4 4 4 4 a4 a4 4 a
F a4 a4 4 4 4 4 4 a4 4 & a4 4 4 a o . oa
F 4 4 4 4 4 M 4 4 M 4 s b a4 b 4 & A% 4 a
& & & & & & & & & & & x a

[S A A G T A a2 SV aab'sS

[V SV SV O SF S S S SNV 2N 4

CF A A A A A A A A HA A A A A A A A A
(S0 W W U W W W W W U \N W W W W W W W W W
(N N A U N Y

(NN T U U U T U N N

LM M M M M M M M M M M M W

N N R T N N U T U
N N T N U SN T T S
[N T T T T e e e S G
[T T T S S N N e e]
[N s T T T i S U U

i

8.39 ode

The ode module, illustrated in the example odetest.asy, implements a number of explicit
numerical integration schemes for ordinary differential equations.

Chapter 9: Command-line options 160

9 Command-line options

Type asy -h to see the full list of command-line options supported by Asymptote:

Usage: ../asy [options] [file ...]

Options (negate by replacing - with -no):

-V,-View
-a,-align C|B|TI|Z
-aligndir pair
-antialias n

—arcballradius pixels

-auto3D
—autobillboard
—autoimport string
—autoplain
—autoplay
—autorotate
-axes3

-batchMask
-batchView

-bw

-cd directory
-cmyk

-c,—-command string
-d,-debug
-doubleclick ms
-embed

-exitonEQOF
-fitscreen
-framedelay ms
-framerate frames/s
-globalwrite
-gray

-h,-help
-historylines n
-iconify
-inlineimage
-inlinetex
-interactiveMask
-interactiveView
-interactiveWrite
-k,-keep

—keepaux

-level n
-1,-listvariables
-localhistory

View output; command-line only

Center, Bottom, Top, or Zero page alignment [C]
Directional page alignment (overrides align) [(0,0)]
Antialiasing width for rasterized output [2]
Arcball radius [750]

Automatically activate 3D scene [true]

3D labels always face viewer by default [truel
Module to automatically import

Enable automatic importing of plain [true]
Autoplay 3D animations [false]

Enable automatic PDF page rotation [false]

Show 3D axes in PDF output [true]

Mask fpu exceptions in batch mode [false]

View output in batch mode [false]

Convert all colors to black and white [false]
Set current directory; command-line only
Convert rgb colors to cmyk [false]

Command to autoexecute

Enable debugging messages [false]

Emulated double-click timeout [200]

Embed rendered preview image [true]

Exit interactive mode on EOF [true]

Fit rendered image to screen [true]

Additional frame delay [O]

Animation speed [30]

Allow write to other directory [false]

Convert all colors to grayscale [false]

Show summary of options; command-line only
Retain n lines of history [1000]

Iconify rendering window [false]

Generate inline embedded image [false]

Generate inline TeX code [false]

Mask fpu exceptions in interactive mode [true]
View output in interactive mode [true]

Write expressions entered at the prompt to stdout [true]
Keep intermediate files [false]

Keep intermediate LaTeX .aux files [false]
Postscript level [3]

List available global functions and variables [false]
Use a local interactive history file [false]

Chapter 9: Command-line options 161

-loop

-m,-mask
-maxtile pair
-maxviewport pair
-multiline
-multipleView
-multisample n
-offscreen
-0,-offset pair
-f,-outformat format
-0,-outname name
-p,-parseonly
-pdfreload
-pdfreloaddelay usec
-position pair
-prc

-prompt string
-prompt2 string
-q,—quiet
-render n
-resizestep step
-reverse

-rgb

-safe

-scroll n
-spinstep deg/s
-svgemulation
-tabcompletion
-tex engine
—thick

—-thin

-threads
-toolbar
-s,-translate
-twice

-twosided
-u,-user string
-v,-verbose
-version

-wait

-warn string
-where
-zoomfactor factor
-zoomstep step

Loop 3D animations [false]

Mask fpu exceptions; command-line only

Maximum rendering tile size [(1024,768)]

Maximum viewport size [(2048,2048)]

Input code over multiple lines at the prompt [false]
View output from multiple batch-mode files [false]
Multisampling width for screen images [4]

Use offscreen rendering [false]

PostScript offset [(0,0)]

Convert each output file to specified format
Alternative output directory/filename

Parse file [falsel

Automatically reload document in pdfviewer [false]
Delay before attempting initial pdf reload [750000]
Initial 3D rendering screen position [(0,0)]

Embed 3D PRC graphics in PDF output [true]

Prompt [>]

Continuation prompt for multiline input [..]
Suppress welcome message [false]

Render 3D graphics using n pixels per bp (-1=auto) [-1]
Resize step [1.2]

reverse 3D animations [falsel

Convert cmyk colors to rgb [false]

Disable system call [true]

Scroll standard output n lines at a time [0]

Spin speed [60]

Emulate unimplemented SVG shading [false]
Interactive prompt auto-completion [true]
latex|pdflatex|xelatex|lualatex|tex|pdftex|luatex|context|none [late
Render thick 3D lines [true]

Render thin 3D lines [true]

Use POSIX threads for 3D rendering [true]

Show 3D toolbar in PDF output [truel

Show translated virtual machine code [false]

Run LaTeX twice (to resolve references) [false]

Use two-sided 3D lighting model for rendering [truel
General purpose user string

Increase verbosity level (can specify multiple times) [0]
Show version; command-line only

Wait for child processes to finish before exiting [false]
Enable warning; command-line only

Show where listed variables are declared [false]
Zoom step factor [1.05]

Mouse motion zoom step [0.1]

All boolean options can be negated by prepending no to the option name.

Chapter 9: Command-line options 162

If no arguments are given, Asymptote runs in interactive mode (see Chapter 10 [Inter-
active mode], page 164). In this case, the default output file is out.eps.

If - is given as the file argument, Asymptote reads from standard input.
If multiple files are specified, they are treated as separate Asymptote runs.

If the string autoimport is nonempty, a module with this name is automatically imported
for each run as the final step in loading module plain.

Default option values may be entered as Asymptote code in a configuration file named
config.asy (or the file specified by the environment variable ASYMPTOTE_CONFIG or -config
option). Asymptote will look for this file in its usual search path (see Section 2.5 [Search
paths], page 6). Typically the configuration file is placed in the .asy directory in the user’s
home directory (%USERPROFILEY\.asy under MSDOS). Configuration variables are accessed
using the long form of the option names:

import settings;
outformat="pdf";
batchView=false;
interactiveView=true;
batchMask=false;
interactiveMask=true;

Command-line options override these defaults. Most configuration variables may
also be changed at runtime. The advanced configuration variables dvipsOptions,
hyperrefOptions, convertOptions, gsOptions, psviewerOptions, pdfviewerQOptions,
pdfreloadOptions, glOptions, and dvisvgmOptions allow specialized options to be
passed as a string to the respective applications or libraries. The default value of
hyperrefOptions is setpagesize=false,unicode,pdfborder=0 0 O.

If you insert

import plain;
settings.autoplain=true;

at the beginning of the configuration file, it can contain arbitrary Asymptote code.

The default output format is EPS for the (default) latex and tex tex engine and PDF for
the pdflatex, xelatex, context, luatex, and lualatex tex engines. Alternative output
formats may be produced using the -f option (or outformat setting).

To produce SVG output, you will need dvisvgm (version 1.5.3 or later) from http://
dvisvgm. sourceforge.net and must use the latex or tex tex engine. You might need
to adjust the configuration variable 1ibgs to point to the location of your Ghostscript
library 1ibgs.so (or to an empty string, depending on how dvisvgm was configured).

Asymptote can also produce any output format supported by the ImageMagick convert
program (version 6.3.5 or later recommended; an Invalid Parameter error message in-
dicates that the MSDOS utility convert is being used instead of the one that comes with
ImageMagick). The optional setting -render n requests an output resolution of n pixels
per bp. Antialiasing is controlled by the parameter antialias, which by default specifies a
sampling width of 2 pixels. To give other options to convert, use the convertOptions set-
ting or call convert manually. This example emulates how Asymptote produces antialiased
tiff output at one pixel per bp:

http://dvisvgm.sourceforge.net
http://dvisvgm.sourceforge.net

Chapter 9: Command-line options 163

asy -o - venn | convert -alpha Off -density 144x144 -geometry 50%x eps:- venn.tiff

If the option -nosafe is given, Asymptote runs in unsafe mode. This enables the int
system(string s) and int system(string[] s) calls, allowing one to execute arbitrary
shell commands. The default mode, -safe, disables this call.

A PostScript offset may be specified as a pair (in bp units) with the -0 option:
asy -0 0,0 file

The default offset is zero. The pair aligndir specifies an optional direction on the boundary
of the page (mapped to the rectangle [-1,1]x[-1,1]) to which the picture should be aligned;
the default value (0,0) species center alignment.

The -c¢ (command) option may be used to execute arbitrary Asymptote code on the
command line as a string. It is not necessary to terminate the string with a semicolon.
Multiple -c options are executed in the order they are given. For example

asy -c 2+2 -c "sin(1)" -c "size(100); draw(unitsquare)"
produces the output

4
0.841470984807897

and draws a unitsquare of size 100.

The -u (user) option may be used to specify arbitrary Asymptote settings on the com-
mand line as a string. It is not necessary to terminate the string with a semicolon. Multiple
-u options are executed in the order they are given. Command-line code like -u x=sqrt (2)
can be executed within a module like this:

real x;
usersetting() ;
write(x);

When the -1 (listvariables) option is used with file arguments, only global functions
and variables defined in the specified file(s) are listed.

Additional debugging output is produced with each additional -v option:
-v Display top-level module and final output file names.

A" Also display imported and included module names and final LaTeX and dvips
processing information.

A" Also output LaTeX bidirectional pipe diagnostics.
EATATATS Also output knot guide solver diagnostics.

-VVVVV Also output Asymptote traceback diagnostics.

Chapter 10: Interactive mode 164

10 Interactive mode

Interactive mode is entered by executing the command asy with no file arguments. When
the -multiline option is disabled (the default), each line must be a complete Asymptote
statement (unless explicitly continued by a final backslash character \); it is not necessary
to terminate input lines with a semicolon. If one assigns settings.multiline=true, inter-
active code can be entered over multiple lines; in this mode, the automatic termination of
interactive input lines by a semicolon is inhibited. Multiline mode is useful for cutting and
pasting Asymptote code directly into the interactive input buffer.

Interactive mode can be conveniently used as a calculator: expressions entered at the
interactive prompt (for which a corresponding write function exists) are automatically
evaluated and written to stdout. If the expression is non-writable, its type signature will
be printed out instead. In either case, the expression can be referred to using the symbol %
in the next line input at the prompt. For example:

> 2+3

5

> %x4

20

1/%

.05

sin (%)
.0499791692706783
currentpicture
<picture currentpicture>
> %.size(200,0)

>

v O Vv OV

The % symbol, when used as a variable, is shorthand for the identifier operator answer,
which is set by the prompt after each written expression evaluation.

The following special commands are supported only in interactive mode and must be
entered immediately after the prompt:

help view the manual;
erase erase currentpicture;
reset reset the Asymptote environment to its initial state, except for changes to

the settings module (see [settings], page 162), the current directory (see [cd],
page 53), and breakpoints (see Chapter 14 [Debugger|, page 169);

input FILE
does an interactive reset, followed by the command include FILE. If the
file name FILE contains nonalphanumeric characters, enclose it with quota-
tion marks. A trailing semi-colon followed by optional Asymptote commands
may be entered on the same line.

quit exit interactive mode (exit is a synonym; the abbreviation q is also accepted
unless there exists a top-level variable named q). A history of the most recent
1000 (this number can be changed with the historylines configuration vari-
able) previous commands will be retained in the file .asy/history in the user’s

Chapter 10: Interactive mode 165

home directory (unless the command-line option -localhistory was specified,
in which case the history will be stored in the file .asy_history in the current
directory).

Typing ctrl-C interrupts the execution of Asymptote code and returns control to the
interactive prompt.

Interactive mode is implemented with the GNU readline library, with command history
and auto-completion. To customize the key bindings, see: http://cnswww.cns.cwru.edu/
php/chet/readline/readline.html

The file asymptote.py in the Asymptote system directory provides an alternative way of
entering Asymptote commands interactively, coupled with the full power of Python. Copy
this file to your Python path and then execute from within Python the commands

from asymptote import *
g=asy ()

g.size(200)
.draw("unitcircle")

.send ("draw(unitsquare)")
.£fi11("unitsquare, blue")
.clip("unitcircle")
.label("\"0\", (0,0), SW")

0 03 09 0] OB

http://cnswww.cns.cwru.edu/php/chet/readline/readline.html
http://cnswww.cns.cwru.edu/php/chet/readline/readline.html

Chapter 11: Graphical User Interface 166

11 Graphical User Interface

In the event that adjustments to the final figure are required, the preliminary Graphical
User Interface (GUI) xasy included with Asymptote allows you to move graphical objects
and draw new ones. The modified figure can then be saved as a normal Asymptote file.

11.1 GUI installation

As xasy is written in the interactive scripting language Python/TK, it requires Python
(http: //www . python . org), the Python Imaging Library (http://www.pythonware .
com/products/pil/), and the tkinter package (included with Python under Microsoft
Windows) be installed. Fedora Linux users can either install tkinter with the commands

yum install tkinter
yum install tk-devel

or manually install the tkinter, tix, tk, and tk-devel packages.

Pictures are deconstructed into the PNG image format, which supports full alpha chan-
nel transparency. Under Microsoft Windows, this requires Python 2.7.4 and the Python
Imaging Library:

http://www.python.org/ftp/python/2.7.4/python-2.7.4.msi
http://effbot.org/downloads/PIL-1.1.7.win32-py2.7.exe.

On UNIX systems, place http://effbot.org/downloads/Imaging-1.1.7.tar.gz in the
Asymptote source directory, and type (as the root user):

tar -zxf Imaging-1.1.7.tar.gz
cd Imaging-1.1.7
python setup.py install

11.2 GUI usage

A wheel mouse is convenient for raising and lowering objects within xasy, to expose the
object to be moved. If a wheel mouse is not available, mouse Button-2 can be used to
repeatedly lower an object instead. When run from the command line, xasy accepts a
command line option -x n, which sets the initial magnification to n.

Deconstruction of compound objects (such as arrows) can be prevented by enclosing
them within the commands
void begingroup(picture pic=currentpicture);
void endgroup(picture pic=currentpicture);

By default, the elements of a picture or frame will be grouped together on adding them
to a picture. However, the elements of a frame added to another frame are not grouped
together by default: their elements will be individually deconstructed (see [add], page 50).

http://www.python.org
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.python.org/ftp/python/2.7.4/python-2.7.4.msi
http://effbot.org/downloads/PIL-1.1.7.win32-py2.7.exe
http://effbot.org/downloads/Imaging-1.1.7.tar.gz

Chapter 12: PostScript to Asymptote 167

12 PostScript to Asymptote

The excellent PostScript editor pstoedit (version 3.50 or later; available from http://
sourceforge . net / projects / pstoedit /) includes an Asymptote backend. Unlike
virtually all other pstoedit backends, this driver includes native clipping, even-odd
fill rule, PostScript subpath, and full image support. Here is an example: asy -V
/usr/share/doc/asymptote/examples/venn.asy

pstoedit -f asy venn.eps test.asy

asy -V test

If the line widths aren’t quite correct, try giving pstoedit the -dis option. If the fonts
aren’t typeset correctly, try giving pstoedit the -dt option.

http://sourceforge.net/projects/pstoedit/
http://sourceforge.net/projects/pstoedit/

Chapter 13: Help 168

13 Help

A list of frequently asked questions (FAQ) is maintained at
http://asymptote.sourceforge.net/FAQ

Questions on installing and using Asymptote that are not addressed in the FAQ should be
sent to the Asymptote forum:

http://sourceforge.net/p/asymptote/discussion/409349

Including an example that illustrates what you are trying to do will help you get useful
feedback. LaTeX problems can often be diagnosed with the -vv or -vvv command-line
options. Contributions in the form of patches or Asymptote modules can be posted here:

http://sourceforge.net/p/asymptote/patches
To receive announcements of upcoming releases, please subscribe to Asymptote at
http://freecode.com/projects/asy

If you find a bug in Asymptote, please check (if possible) whether the bug is still present
in the latest Subversion developmental code (see Section 2.8 [Subversion|, page 8) before
submitting a bug report. New bugs can be submitted using the Bug Tracking System at

http://sourceforge.net/projects/asymptote
To see if the bug has already been fixed, check bugs with Status Closed and recent lines in
http://asymptote.sourceforge.net/Changelog
Asymptote can be configured with the optional GNU library 1ibsigsegv, available from
http://1libsigsegv.sourceforge.net, which allows one to distinguish user-generated
Asymptote stack overflows (see [stack overflow], page 65) from true segmentation faults

(due to internal C++ programming errors; please submit the Asymptote code that generates
such segmentation faults along with your bug report).

http://asymptote.sourceforge.net/FAQ
http://sourceforge.net/p/asymptote/discussion/409349
http://sourceforge.net/p/asymptote/patches
http://freecode.com/projects/asy
http://sourceforge.net/projects/asymptote
http://asymptote.sourceforge.net/ChangeLog
http://libsigsegv.sourceforge.net

Chapter 14: Debugger 169

14 Debugger

Asymptote now includes a line-based (as opposed to code-based) debugger that can assist
the user in following flow control. To set a break point in file file at line line, use the
command

void stop(string file, int line, code s=quote{});

The optional argument s may be used to conditionally set the variable ignore in plain_
debugger .asy to true. For example, the first 10 instances of this breakpoint will be ignored
(the variable int count=0 is defined in plain_debugger.asy):

stop("test",2,quote{ignore=(++count <= 10);});
To set a break point in file file at the first line containing the string text, use
void stop(string file, string text, code s=quote{});
To list all breakpoints, use:
void breakpoints();
To clear a breakpoint, use:
void clear(string file, int line);
To clear all breakpoints, use:
void clear();

The following commands may be entered at the debugging prompt:

h help;

c continue execution;

i step to the next instruction;

s step to the next executable line;

n step to the next executable line in the current file;

f step to the next file;

r return to the file associated with the most recent breakpoint;
t toggle tracing (-vvvvv) mode;

q quit debugging and end execution;

X exit the debugger and run to completion.

Arbitrary Asymptote code may also be entered at the debugging prompt; however, since
the debugger is implemented with eval, currently only top-level (global) variables can be
displayed or modified.

The debugging prompt may be entered manually with the call
void breakpoint(code s=quote{});

Chapter 15: Acknowledgments 170

15 Acknowledgments

Financial support for the development of Asymptote was generously provided by the Natural
Sciences and Engineering Research Council of Canada, the Pacific Institute for Mathemat-
ical Sciences, and the University of Alberta Faculty of Science.

We also would like to acknowledge the previous work of John D. Hobby, author of the
program MetaPost that inspired the development of Asymptote, and Donald E. Knuth,
author of TEX and MetaFont (on which MetaPost is based).

The authors of Asymptote are Andy Hammerlindl, John Bowman, and Tom Prince.
Sean Healy designed the Asymptote logo. Other contributors include Michail Vidiassov,
Radoslav Marinov, Orest Shardt, Chris Savage, Philippe Ivaldi, Olivier Guibé, Jacques
Pienaar, Mark Henning, Steve Melenchuk, Martin Wiebusch, and Stefan Knorr.

Index 171

Index

! <

PP 61 L PP 61

Lo B8, Bl KTt 61

% ==

e 61, 164 crrrrentereeseeeeeneeeeee 58, 61

/2 62
>

& D 61
D 61

PP 23, 61

B . 61
?

* e e e 61

K 38, 61 ~

K e 61

K 62 e 61
1053 62
J2EE 12

+

b 38, 61 |

o 62

P 62 o 61
N 61

- 2

e e 61

e 12,62 2D 8raphs.....oo 96

R 23

e 62 3

P 163 aD b 144

e I 163 EIADAS -«

—u 163 3D grids. .o 148

v 4,9 8D PostScript.........coooviiiiii, 142

. A

... 12 af)th
BDOTE o oottt

Sy e et 6 abs 95, 68

accel. ... 33, 140

/ ACCE S S vttt et 78
acknowledgments............. oL 170

[61 BCOS « e ettt 68

[62 00 vt 68
ACOSh ..o e 68

. Add .o 50, 51, 136

* AaddViews . .. oo i 138

.. 61 adjust ... 4
... 23 Aioo ... 68

Index

ALY .o 68
alias ... 58, 72
Align 18
aligndir.....................aL 163
ALl 75
AlTowW ..o 46
And. .. 23
AND . .o 61
angle ... 25
animate...... ...t 5, 55, 94
animation............. ool 93
annotate........l 96
antialias............ ... il 135, 162
appPend 53, 70
Arc. ..o 31
AT C ittt 31, 136
ATCATYTOW. ... 14
ArcArrow3. 142
AYCATTOWS . .ottt 14
ArcArrows3 142
arclength.....................iia 33, 140
arcpoint............ 33
arctime i 33, 140
ArGUINENTS . ..ottt e 65
arithmetic operators........................... 61
ATTAY o oe ettt et 71
array iteration............ ool 24
ATTAYS « + v v vv e e et 69
o a1 PP 14, 19
ATrow ... 14
arrow Keys. ... 9
Arrow3 .. 142
ATTOWS .ottt 14
ATTOWS .+« ettt ettt e 14
ATTowWS3 . .. 142
S e 79
ASCIi oot 29
ASIM L 68
ASII Lo 68
asinh ... 68
Aspect 48
ASSETt ..ot 30
assignment i i 24
BB 30, 80
asy-mode ...l 7
ASY.VIM ... 7
asyinclude........ ..o 83
asymptote.sty......... ... il 83
asymptote.xml 8
ASYMPTOTE_CONFIG........cciiuiiniiniinenn. 162
AtaAn ... 68
aTan 68
atan2 ... 68
atanh ... 68
Atleast ...oviiii 23
attach...........ooiiiiiiiiii 52, 83, 104
autoadjust 138

autoimport 162

172
automatic scaling............ oL 112
axialshade..............oiiiiiiiiiiiiinn... 17
AXIS ... 119, 121, 145, 146
azimuth.......o 27
B
babel 95
background color oL 50
BackView..........ooiiiiiiiiiiiiiii 138
Bar. ... 14
Bar3 .. 142
Bars ... 14
Bars3 142
barsize........... . i 14
base modules.............. ... oo 88
basealign................ ...l 42
baseline.............. ... il 20
batchmode..........ol 9
beep ... 30
BeginArcArrow. ...t 14
BeginArcArrow3.........l 142
BeginATrow. . ..ottt 14
BeginArrow3t 142
BeginBar..........cooiiiiiiiiiiiiiiiiiiiiit 14
BeginBar3............ ..ol 142
BeginDotMargin......................... 15
BeginDotMargin3............................. 142
BeginMargin, 15
BeginMargin3............ oL 142
BeginPenMargin......................... 15
BeginPenMargin2......................oo.aL. 142
BeginPenMargin3............................. 142
BeginPoint............. o ool 19
Bessel ... 68
bevel 152
beveljoin...........oiiiiiiiiiii 41
Bezier curves......... ... o oot 22
bezulate..............l 133
Bl 68
Bi_deriv.......oiiii 68
Billboard............ccoiiiiiiiiii 140
binary ... 54
binary format oo i 54
binary operators........... ..o 61
binarytree........................oL 92
black stripes ool 135
Blank .. oovviiii 14
block.bottom...............l 151
block.bottomleft............................ 151
block.bottomright 151
block.center.........................LL 151
block.draw ..., 151
block.left 151
block.position.............ooiiiiiiiiiiia, 151
block.right 151
block.tOp. v 151
block.topleft..........oooiiiiiiiiiiiii 151

Index

block.topright................ 151
bool ... 24
bool3 ... 25
boolean operatorso, 61
Bottom 98
BottomTop.o 98
BottomView i il 138
bounding box........o 50
Bounds............oo i il 144
DOX ¢ttt 47, 49, 137
D 9
Drace ... 31
break ... 24
breakpoints ... 169
brick ... 43
broken axiS....... ..ot 116
bug reports........ ... i 168
buildcycle........oooiiiiiiiiiiiiiiiii L 35
Button-1......... i 166
Button-2........ ... 166
BWRainbow......... ... 126
BWRainbow2 126

C

Cstring. ... 28
CAD . o 96
calculateTransform.................ccovnon... 49
CAMETA ..ottt tteee e et iee et iiee e 137
CASES o vt 77
o o v 68
oo PRt 53
Ceil o 68
o7 =3 41 1 A 137
Cent T ittt 19
checker......... 43
Chinese ... 95
ChOOSE ..ot te 68
Gt e 68
circle....... ... il 31, 136, 152
Circle . i 31
circlebarframe................cciiiiiiinnin... 90
CIK e 95
clamped......... ... 96
Clear.oiiii 54, 169
clip ... 18
CLZ . 61
o3 10Ut 10
o3 11« PSP 4
CMYK ... 39
colatitude.......coiiiiiiiin i 27
COlOT .ot 39
coloredNodesovviiniieii it 150
coloredpathl 150
coloredSegments............... 150
oo J e ol =Y == P 39
o7 o 1 e ot P 39

173
comma-separated-value mode 75
command-line options...................... 5, 160
comment character 53
compass directions.o 11
Compiling from UNIX source................... 6
COMPLEMENTttt ittt 71
ConcCat ..ot 72
conditional............ ... o i 24, 61
config. . .. 5, 162
configuration file........... o oL 4, 162
configuring i 4
COMJ v vvttii 25
constructors........... .. i 58
CONTEXTE . vttt ettt e 162
continue............ il 24, 169
CONTOUT - .ottt ettt e e e e e e e 153
CONTOUT3 . ..ttt e 158
CONtrOlS ..o iiiii 22,131
controlSpecifier...............l 38
CONVETT .ottt 5, 55, 93, 162
convertOptions........................ 162
Coons shading........ ..., 17
COPY « vttt et 72
Lo o = 68
L0 e 68
COSh .. 68
CPULIME ...\ttt 60
5o 110
cropping graphs........... ..o i 110
o3 o o = 1 26, 27, 106
crossframe.......... il 90
crosshatch......... ... o o i 44
L2 P 75
CTZ. . e 61
CUDICTOOtES . ottt 74
CUTL . o 23, 131
curlSpecifier.............l 38
CUrTentPen.......ooiiiiiiiiii i 38
currentprojection..............l 138
CUTVE « ettt ettt et ettt 158
custom axis types...........oiiiiiiiiii.. 98
custom mark routine 109
custom tick locations......................... 100
[5 PP 35
CYCLle . 10, 12, 131
cyclic ... 32, 37, 70, 140
CyrilliC. o oo 95
D
dashdotted............... i 40
dashedcoiiiiiiiiiiiiiiii 40
data types......cooiiiiii i 24
dateo 29
Debian ... 3
debugger........ i 169
declarationo i, 24
deconstruct i 166

Index

default arguments ..., 65
defaultformat 99
DefaultHeadcoiiiiiiiiiiiinn... 14
DefaultHead3..............coiiiiiiniiiinnn. 142
defaultpen.............coovvuunn... 39, 41, 42, 46
defaultrender.................oooiiiiiiil, 132
deferred drawingooiiiiinan. 88
Degrees ... 68
degrees ...t 25, 68
delete.........oiiiiiiiiii 55, 70
description 1
diagonal..........................lL 74
diamond............l 151
dimension.......... il 75
Air .t 6, 25, 27, 33, 140
direction specifier................oi i 22
directory 53
dirSpecifier............ol 38
dirtime....... ... i 34
Aisplay . ..ot 5
L« Lo 2 PP 24
DOSendl ...ttt 54
DOSnewl ...t 54
Ot . 15, 26, 27, 73
DotMargin................. ...l 15
DotMargin3l 142
DotMargins................l 15
DotMargins3l 142
dotted ... 40
double deferred drawing 136
double precision oo 54
DraW . .ottt 14, 49
drawo 14, 16, 133
drawing commands ool 14
drawline............oiiiiiiiiii 88
drawtree........... ... o iiiiiiiiiiiiiina L 93
AVAPS « vttt 5
dvipsOptions..............ooiiiiiiiiiia. 162
AVISVEM .o 5, 162
dvisvgmOptions.........cooiiiiiiiiiinnnn. 162
E

Editing modes........ ... 7
B 68
€1LiPSE vttt 31, 47
elliptic functions........... i 68
LS L 24
BIMACS « ottt ettt ettt 7
embed 94
Embedded.......... i il 140
BMPEY oo 47
EndArcArrowcoviiii 14
EndArcArrow3 142
EndArrow........ ..ol 14
EndArrow3...... ..ol 142
EndBar 14
EndBar3.t 142

174
EndDotMargin il 15
EndDotMargin3..............oiiiiiiiii.. 142
endl ... 54
EndMargin....... ..o 15
EndMargin3d ...t 142
EndPenMarginoooiiiiiiiiiii., 15
EndPenMargin2. ..., 142
EndPenMargin3. ..., 142
EndPoint.........o il 19
envelope. ... 47
environment variables.............. ... oL 5
eof .. 54, 75
€0l L 54, 75
EPS ottt 19, 162
ETASE « ottt et 9, 28, 47, 52
erf . 68
erfC . 68
= e PP 53, 54
EITOT DArS .. oot 107
errorbars. 106
VAL L 80
evenodd ... 12, 42
exit..... ... o il 30, 164, 169
154 o J PP 68
ERPL vttt 25, 27
exXPlicit ..ottt 7
explicit casts ... i 7
expml 68
exponential integral............... 68
eXtendCap. . .. 41
extension........... ool 35, 94
external il 94
extrude........ ... i 140
E o 11, 68
F
fabs ... 68
face ..o 142
factorial........ ... 68
Fedora....... ..o 3
feynman........... ...l 93
e i P 73, 88
3 7
0 = 53, 169
Fad e 16
Fill. .ot 14, 49
FillDraw .. oovviiiiiitie e, 14, 49
filldraw........ooiiiiii 16
filloutside ... 16
FA1lruleottt e 42
find. ..o 28, 72
firstcut....... ... 35
T P 49
T 2 136
fixedscalingl 48
floor ..o 68

Index

flush ... o 54
fmod ..o 68
font 42
font command............t 42
fontcommand 43
fontsize.......coiiiiiiii 42
O . o 24
format 29, 162
forum......... 168
frameo 47
from ... 78
FrontView.......... ..o, 138
function declarations 64
F o e 68
Function shading 18
function shading...........o 18
functionso i 63, 68
functionshade 18

G

GAMMA .. oottt ettt et 68
Gaussrand..........c..iiiiiiii 68
gEOMeLTy ... 89
getc ... 53
getpair............. 55
getreal 55
GetStTing. ... 55
gettriple. 55
glOptions................ ...l 135, 162
GNU Scientific Library............. 68
gouraudshade 17
Gradient.............ol 126
gradient shading........... L 16
graph il il 96
Braph3 .. e 144
graphic..........ooiiiiii 19
graphical user interface.................... ... 166
= o= 39
Grayscale............ooiiiiiiiii 126
grayscale ... 39
grid ..o 43, 113
Brid3 ... 148
S e 4
BS L. 68
GO . 7
gsOptions.............. ...l 162
GUI installation.................oooooia 166
GUI USAZE. o ve et 166
guide 36
guide3 131
GUIL. .o 166

height ... 83

175
Hermite..... oo i 96
Hermite(splinetype splinetype.............. 96
heX . 29, 39
hexidecimalo, 29, 39
hidden surface removal 142
histogram........... ..o 68
hisStoryoviuiiiiiiii i 55, 164
historylines................ il 164
HookHeadovvuuiiiiiiiii i, 14
HookHead3............ooooiiiiiiiiiiii ... 142
Horizontal il 152
hyperrefOptions............................. 162
hypot ... 68
I
i_scaled........oiiiii 68
dconic..... o 135
identity............. il 46, 68, 74
identity4d. 139
T P 24
IgnoreAspectot 48
IMAGE . 126
ImageMagick........................... 5, 93, 162
Imagesooooviiiiiiiii i 126
implicit casts 77
implicit linear solver....................... 94
implicit scaling i 63
import ... 79
INChES ottt e 10
Incircle. . oo e 26
Include . ..o 80
including images........... ... o i 19
increasing............. 89
AN . 25
inheritance o i 60
initializedo i 70
initializers............ .. 55
IN1Ame .ot e 83
InOUtTICKS «vviit et 144
input......... 53, 164
INSET . e 28, 70
inside......... o i il 36
insphere..........cooiiiiiiiiiii i 141
ISt ..o 169
installation o il 3
Int. .o 25
integer division............o oL 61
interactive mode............... . il 164
interior....... i 36
international characters........................ 95
interp.........oiii 61
interpolateol 89
intersect ool 34, 88, 140
intersectionpoint................... 35, 88, 140
intersectionpoints................. 35, 140, 141
intersectionsl 34, 140
InTiCKS « ottt et 144

Index

AnEMaX .o e 25
AntMin ... e 25
INVETSe ..ttt 46, 74
Anvert 139
invisible. 39
=5 o - o 25
A 68

A 68
Japanese ... 95
K

koscaled.............oooiiiiiiiiiiiiiiiaan L 68
keepAspect 48, 83
keyboard bindings:t 134
REYS « o 70
keyword 66
keyword-only 66
keywords 65
Ko 68
Kate . 8
KDE editor...........ooooiiiiiiiiiiiiiiiiL 8
Korean.............o o i 95
L

Label. ..ottt 16, 18, 102
label. .o e 18, 140
labelpath.............. ... oo il 95
labelpath3. 96
labelx . ..o 102
labely ... 102
Landscape. 49
lasteut ... 35
1asy—MOdevuuti e 7
lateX oot 162
LaTeX fonts......ooviiiiiiii i 42
LaTeX USAZE ... vvvvvviiiiieens 83
latexmkRot 83
latinl ... 95
latitude.........o i 27
latticeshade 16
= 14
leastsquares............................. 90, 120
S 101
LeftRAGNT . .ottt 101
LeftSide......oooiiiiiiiii 19
LeftTicks ...t 99, 100
LeftView.......oooiiiiiiiiiiiii 138
legend ... 14, 15, 104
Legendre.......... i 68
length................. 25, 26, 28, 32, 37, 70, 140
letter ... oo 5
lexorder......ooiiiiiiii 89

176
libmroutines.......... ..o, 68
libsigsegv. ..o 65, 168
limits ..o 110
d1ime oo 75
linemode ... 75
Linear o ittt 112
LiM@CADP vttt 41
linejoin.... ...t 41
linesKip...ovviiiiii e 42
linetype ...t 41
linewidth..... ..o 41
locale ..ot 29
LOg oot 112
O e 68
log-log graph...........o 113
ToglO .o 68
10gIp oo 68
log2graph..... ..o, 115
logarithmic graph 113
logical operators............. 61
longdashdotted..................l 40
longdashed.................l 40
longitude.......coviuiiiiiiiii i 27
loOD . e oo 24
Jualatex.....oooiiiiii i 162
JuateX oot 162
M
Mac0S X binary distributions 3
makepen.................. il 45
. E= o TP 71
Margin......ooouiiiiiii 15
Margind.ottt 142
MATINS « .. 136
Margins.............. i 15
Margins3.......... ... 142
MATK .« ottt 106
markangle.......................... 91
marker ... 106
markersc.cooiiiiiiiiii i 90
MATKRNOAES . .t ettt et 106
markuniform......... il 106
ASK .« ottt e 25
math ... 88
mathematical functions........................ 68
11E- QPP 35, 47, 73, 140
maxbound il 26, 27
maxtile e 135
maxtimes....... ... 35
maxviewport 135
MetaPost....... ..o 94
MetaPoSt ...ttt 23
MetaPost cutafter............ ... oo, 35
MetaPost cutbefore............. 35
MetaPost pickUpc.ovviiiiiiiinnn, 38
MetaPost whatever............................ 94
Microsoft Windowscoviiiiii... 3

Index

MidATCATTOW oottt et et 14
MidArCATTOW3 ..ottt 142
MidATTOW . ottt et 14
MidArrowW3. . it 142
midpoint....... 34
MidPodintooiii i e 19
min.... ..o 35, 47, 73, 140
minbound 26, 27
minipageo 20
MINBIMES .\ttt e 35
miterjoinm...........ooiiiiiiiiiiii 41
miterlimit...... i . 42
MELEMD . ..o 53
1P 10
MOAE .ottt ettt et 54
11 To} o o) e’ e I oJ0 AP 96
00 010 <1 S 166
mouse bindings.coiiiiiiiiiiii.. 134
MOV .« ettt e 46
MoveQuiet.....oovriii i 46
multisampleooiiiiiiiiiiiii 134

N

TIAME .« ettt et e e e 54
named arguments., 65
natural 96
TEEW . ot ettt e e e e et 57, 71
newframe......... ..ot 47
=3 54
NEWEOIL . oottt et e 69
BT v 169
NESS ottt 42
nobasealignol 42
NOFALL. .ot 14, 49
NoMargin.......................... ... 15
NoMargin3......... ..ot 142
TIOTIE &« ettt ettt e e e e 54
NOmE .\ttt 14
NOTMAL . oottt e 140
nosafe...... 163
notaknot ... 96
NOT e ettt 61
NOTiCKRS o ottt e e 99
NOTACKS3 . ottt 144
NULL oo 57
NULIPEN .ottt 18, 49
Nt 11
NURBS .ot e 138

0D 144
oblique.............. ...l 137
obliqueX......ooiiiiiiii 137
obliqueY......cooiiiiii 137
obliqueZ........coiuiiiiiiii 137
Ode ot 159

177
offset il 41, 163
OmitTick.... ..o 100
OmitTickInterval............................ 100
OmitTickIntervals 100
opacCity........o 43
1) 0= & 53
OpenGLttt 134
operator.............. .. 62
operator ——..................ooiiii 96
operator ... 96
OpPerator anSWeTc.oveeeiinnneeaannn. 164
operator cast.............iiiiiiiiiiii 77
operator ecast, 78
operator init.....................l 55, 59
operators....... ... 61
OPIONS . ottt 160
orient 26, 141
orientation............... ... il 49
orthographic..............ooiiiiiiiiiiiia, 137
OR . 61
outformat............. .. il 134
outprefix........l 48
output 53, 162
overloading functions 64
overwrite............... . it 45
O 136
OULTicKRS ... 144
P
PaCk ... 20
packing. ... 67
pair......... 10, 25
PaiTs . 73
paperheight.........................l 5
Papertype. ... 5
paperwidth......... o i i 5
parallelogram....................ooiuiii.... 151
parametric surface........... L. 146
parametrized curve...........o 110
partialsum............................LL 89
patch-dependent colors 133
path.. ... 31, 132, 152
path markers.........ol 106
pathl[] ... 12
path3 ... 131, 132
patterns il 43, 90
pdflatex.................ol 162
pdfreloadOptions............................ 162
pdfviewer..... 4
pdfviewerOptions................, 162
PDF 162
POIL. oottt 38
PenMargin................... ...l 15
PenMargin2 142
PenMargin3ooiiiiiiiiiiininnnnann. 142
PenMargins...................... ... 15

PenMargins2................coiiiii.. 142

Index

PenMargins3l 142
periodic.......... 96
Perl ..o 83
perpendicular.......... ... 89
perspective i 138
pilcture........ i 47
picture alignment.............. 51
piecewisestraight............................ 32
Pixel ... 142
Pl 68
Plain ... 88
pPlanar........ ... 133
plane ... 136
planeprojectttt 140
point ... 32, 37, 140
polar ... 26
polargraph..............l 97
POLygom. ... i 106
PO ettt 70
Portrait..............l 49
postcontrol............. ... 33, 140
postfix operators oo, 62
postscript.......... ... 52
PostScript fonts................... ...l 43
PostScript subpath............ 12
POWLO Lo 68
PLC ottt 135
precision................ . 54
precontrol. ...t 33, 140
prefix operators.......... ... i 62
private............. 57
Programmingooiiuuiininiinnneaanan. 24
pstoedit..........l 167
PSVIGW ..ot 3
PSVIEWeT ... 4
psviewerOptions............... 162
Pl 10
public............ 57
pPush ... 70
P o 68
Python usage..........cooviiiiiiiiiinnn. 165
Q

quadraticroots 74
quarticroots................ .. il 88
quick reference.........ol 2
quit.....oooi 9, 164, 169
quote ... 80
quotient..........l 61

R

RadialShadeccoviniineiineinennnnn. 50
radialshadeciiiiiinnnnanann, 17
RadialShadeDraw............covvuiunennnnann.. 50
FadiansS ..ot e, 68

178
RainbowW. ..o e 126
FANA .« ettt e 68
TANAMAX . o oot e 68
A « vttt e 75
reading.ot 53
reading string arrays........... ... 75
readlinettt 55
TEAL Lt e 25
realDigits............l 25
realEpsilon............... ..., 25
TeAIMAK . ottt 25
realMin........oiiiiii e 25
realmultottt e 26
rectangle.................iiiiiiiiiiL 151
TECUISION .« vttt ettt ettt et ie i 65
Teferenceuu e 2
reflect ... 47
Relativeovuiiiieii i i 19
relpoint........ i 34
reltimet 34
remainder.............iiiiiii 68
TENAME . v ot ettt e et e e ettt 55
render.........oiiiiiiii 132, 134, 162
replace............. i 28
resetdefaultpen................ 46
rest arguments ... 66
B =Y= o o <Yt 52
restricted..... ...t 57
a2 P s o PP 169
TEVEISE .. ovvveeeeeeeeeeennn 28, 34, 37, 71, 140
rewind 54
rfind 28
TEb. 39
Riemann zeta function......................... 68
Right .o 101
RAGHESIAE. ...\ttt 19
RightTicks.............................. 99, 100
RightView......... 138
rotate ... e 139
Rotateo 19
Rotate(pair z) 19
TOUNA ..ottt 68
TOUNACAD .« ottt et e e 41
roundedpathl 93
roundjoin. ...t 41
roundrectangle.................iiiiaa 152
RPM . 3
runtime imports....... ... 80
Russian 95
S
safe 163
SV & ittt et 52
SavVelineot e 55
SCale. .. 41, 46, 47, 112, 139
Scale.....ooiiiiii 19, 112
SCAle3 .. 139

Index

scaled graph.......... o il 111
scientific graph......... o oo 103
SCroll 54
search il 72
search paths....... 6
S ASCAPE . ..ttt 49
secondary axiS..........eiiiiiiiiiiiiie 117
secondaryX ... 117
secondaryYl 117
SECONAS « .ottt et 29
Seek ... 54
seekeof ...l 54
Segment ... 89
segmentation fault............. 168
self operators..........c.ouiiii i 62
SEQUENCE . .\ttt 71
settingsl 4, 162
= o 68
shading. ... 16
Shift ... 19
shift.... i 46, 47, 139
shiftless........oooiiiiiiiiii i 47
shipout.......... 48
showtarget 137
S 68
signedint.............ol 54
SimpleHead........................l 14
simplexX..... ... 88
SIMPSON 69
1S3 68
SIM. . 68
single precision o il 54
singleint..........l 54
singlereal............. L. 54
sinh 68
SixViews. ... 138
SixViewsFR ... 138
SixViewsUS i 138
size.....l 32, 37, 48, 140, 162
Size3d 136
Slant ...t 47
Slant ..o 19
SleeD .\ 30
Slice .. 35
SCeS . oo 76
Slide ...t 94
SLOPE - vt 89
slopefieldcoiiiiiiiiiiiiii 158
SNCIAN . ..ot 68
SOLid .. 40
SOLidS .ottt 149
SOLVE ..ttt 74
SOTL ... 72
Spline ... 96, 146
split ..o 29
SATT oot 68
SQUATECAP -« v vt v ettt e et e e 41

STANA ..o 68

179
stack overflow........o 65, 168
static......o il 80
stats ... 90
stdinm ... 53
stdout ... 53
SteD i 169
stickframe........... il 90
StOP ... 169
Straight.............. 96
straightl 32, 140
strftime il 29, 30
string......... .. 27, 29
stroke......l 16, 18
strokepath........... il 36
strptime........... . 29
SEXUCE . oo 57
structures i i 57
subpath ... 34, 140
subpictures. ... 49
substr ... 28
SUM. .« ettt ettt et e e e e 72
superpath o 12
SUrface ... 132, 133, 146
SYSEeM ... 30, 163
SYZYEY « o v e vt 93
S 11
SUDBVErsion.vvi i 8
SUPPTESS . vttt i 46
SuppressQuietol 46
SVG oottt 162
SV N 8
T
tab. . 54
tab completionol 9
Tl 68
BN 68
tanh ... 68
target ..o 137
tell o 54
tension........ ...l 23, 131
tensionSpecifier............l 38
tensor product shading 17
tensorshade i i 17
tessellation.............ol 133
teX . 52, 162
TeX fonts ... 42
TEX string ... 27
texcommand.iiiiiiiii i 5
TeXHeadovi it 14
TeXHead3.......... i il 142
texpath....... ... 5, 20
texpreamblel 53
texreset...... ... 53
textbook graph................ 102
Bz 3
BHICK .o 133

Index

thino 133
this o 57
three........ ... i 131
ThreeViews ... 138
ThreeViewsFR................. 138
ThreeViewsUS 138
tick ..o 102
ticks ... 99
Ticks. ... 99, 100
tildeframe..................... ...l 90
tile. .o 43
tilings 43
time ... 29, 30, 88
times........ ... 34, 35
TOD . e 98
TopView. ... 138
Brace ..o 169
trailingzero...............l 99
transform.............. ool 46, 140
transform3l 139
transparency ... 43
BLANSPOSE. .\ 72
175 = N 92
trembling.........l 89
triangle............. ...l 89
triangles............. ...l 133
triangulatel 157
tridiagonall 73
trigonometric integrals.......... L 68
triple.......... 26
TrueMargin.........................ol 15
TrueMargin3l 142
tube. ... 133, 150
tutorial 9
typelcem. ... 42
typedef 30, 64

UBD . et e 94
undefined.......... il 35
unfill ... 18
URFAll. oot e 14, 50
unicode........... ... il 95
UNIFOrm. ..ttt 71
Uninstall ... i 8
UNIQUE ..o 89
UNRIE .. 25, 27
unitbox 12, 137
unitcircle.............. .. il 12, 136
unitrand........... ..o oo 68
unitsize..........ol 11, 48
UNIX binary distributions...................... 3
unpacking oo 67
unravel ... 78
L o 137
update 53

180
usepackage....................iiiii. 53
user coordinates 11
user-defined operators 62
USLEEP . vttt 30
V
ValUE oottt e 88
£ PP 56
variable initializersl 55
vectorfield...................... 122, 123
vectorfield3....... ... 148
vectorization 74
verbatimo 52
vertex-dependent colors....................... 133
Vertical..........ooiiiiiiiiiiiiiii .. 152
viewportheight................. 83
viewportmargin...................ia 136
viewportsize......................LL 136
viewportwidth.......... ...l 83
VIeWS ..o 135
VA . . 7
virtual functions........... i 60
VOIA oot 24
\%%
whatever........ ...ttt 35
Wheelot e 126
wheel mouse.......... ... it 166
While ... 24
white-space string delimiter mode.............. 75
width 83
windingnumber..............ol 35
WOLA .« ettt et e 75
Write...... ... 54, 76
W 11
X
KASY vttt et 166
XAXIS3 . 144
XA . e 54
XeLateX . ittt e 162
Xequals. ... 101
XEqQuals........oooiiiiiiiiiiii 100
X1imits ..o 110
XOR . e 61
XPATT . oot 26, 27
XSCALE ¢ttt 46
XScaled 139
XEICK « o et 102
PP 136
Y 140
XYEqQuals.....oooiiiiiiiiiiiiiiinnnan... 144
XYZeTO .ot 144
XZEQuals.....oooiiiiiiiiiiiiiiiii .. 144
XZEeTO .ottt 100

Index

XZZero ...l 144
Y

yaxis3 ... 144
yequals. ...l 101
YEQUalsooiiiiiiii 98
FIimits ..o 110
YPATE .. 26, 27
YSCAle .t 46
yscaled. 139
ytick ... 102
Y 68, 136
S 140
Yz 140
YZEQUALS....ooii i 144
YZeroo 98

181
YZZero .. oo 144
Z
ZAXIS3 144
ZeTO_Ad .. 68
zero_Ai_deriv......... 68
Zero_Bi 68
zero_Bi_deriv........... 68
ZET O _ i 68
zerowindingl 42
ZeE A L 68
ZPATE Lo 27
ZSCaled 139
/2 P 136
K e 140

	Description
	Installation
	UNIX binary distributions
	MacOS X binary distributions
	Microsoft Windows
	Configuring
	Search paths
	Compiling from UNIX source
	Editing modes
	Subversion (SVN)
	Uninstall

	Tutorial
	Drawing in batch mode
	Drawing in interactive mode
	Figure size
	Labels
	Paths

	Drawing commands
	draw
	fill
	clip
	label

	Bezier curves
	Programming
	Data types
	Paths and guides
	Pens
	Transforms
	Frames and pictures
	Files
	Variable initializers
	Structures
	Operators
	Arithmetic & logical operators
	Self & prefix operators
	User-defined operators

	Implicit scaling
	Functions
	Default arguments
	Named arguments
	Rest arguments
	Mathematical functions

	Arrays
	Slices

	Casts
	Import
	Static

	LaTeX usage
	Base modules
	plain
	simplex
	math
	interpolate
	geometry
	trembling
	stats
	patterns
	markers
	tree
	binarytree
	drawtree
	syzygy
	feynman
	roundedpath
	animation
	embed
	slide
	MetaPost
	unicode
	latin1
	babel
	labelpath
	labelpath3
	annotate
	CAD
	graph
	palette
	three
	obj
	graph3
	grid3
	solids
	tube
	flowchart
	contour
	contour3
	slopefield
	ode

	Command-line options
	Interactive mode
	Graphical User Interface
	GUI installation
	GUI usage

	PostScript to Asymptote
	Help
	Debugger
	Acknowledgments
	Index

