
NUT USB setup in modern Solaris-like systems
(OpenSolaris descendants)

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

2.8.0 2022-12-31 Current release of Network UPS Tools (NUT).

2.6.0 2011-01-14 First release of AsciiDoc documentation for
Network UPS Tools (NUT).

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) iii

Contents

1 Change the OS driver binding: use UGEN 1

2 libusb version and binary 3

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 1 / 4

Local-media device setup for use with NUT has some nuances with numerous descendants of the OpenSolaris project, including
both the commercial Sun/Oracle Solaris 11 and illumos-based open source distributions such as OpenIndiana and OmniOS.
Recommendations below may also apply to other related operating systems, possibly to older releases as well.

1 Change the OS driver binding: use UGEN

Like other hardware, USB devices are interfaced to the operating system by OS drivers, and often there are several suitable
drivers with different capabilities. In Solaris and related systems, this mapping is detailed in the /etc/driver_aliases file
and properly managed by dedicated tools. By default, USB devices can be captured by the generic USB HID driver, or none at
all; however an "UGEN" driver can behave better with the libusb library used on Solaris.

Note
Operations below would need running as root or elevating the privileges (via pfexec, sudo, etc.)

Connect the power device using its USB port to your computer.

Run prtconf -v | less to see the details of device connections, and search for its probable strings (vendor, model, serial
number).

Two examples follow:

• In this example, no suitable driver was attached "out of the box":

:; prtconf -v
...
input (driver not attached)

Hardware properties:
name='driver-minor' type=int items=1

value=00000000
name='driver-major' type=int items=1

value=00000002
name='low-speed' type=boolean
name='usb-product-name' type=string items=1

value='Eaton 9PX'
name='usb-vendor-name' type=string items=1

value='EATON'
name='usb-serialno' type=string items=1

value='G202E02032'
name='usb-raw-cfg-descriptors' type=byte items=34

value=09.02.22.00.01.01.00.a0.0a ←↩
.09.04.00.00.01.03.00.00.00.09.21.10.01.21.01.22.10.0d ←↩
.07.05.81.03.08.00.14

name='usb-dev-descriptor' type=byte items=18
value=12.01.10.01.00.00.00.08.63.04.ff.ff.00.01.01.02.04.01

name='usb-release' type=int items=1
value=00000110

name='usb-num-configs' type=int items=1
value=00000001

name='usb-revision-id' type=int items=1
value=00000100

name='usb-product-id' type=int items=1
value=0000ffff

name='usb-vendor-id' type=int items=1
value=00000463

name='compatible' type=string items=9
value='usb463,ffff.100' + 'usb463,ffff' + 'usbif463,class3.0.0' + 'usbif463, ←↩

class3.0' + 'usbif463,class3' + 'usbif,class3.0.0' + 'usbif,class3.0' + ' ←↩
usbif,class3' + 'usb,device'

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 2 / 4

name='reg' type=int items=1
value=00000002

name='assigned-address' type=int items=1
value=00000003

• In the following example, a "hid power" driver was attached, giving some usability to the device although not enough for
NUT to interact well (at least, according to the helpful notes in the https://web.archive.org/web/20140126045707/http://-
barbz.com.au/blog/?p=407 blog entry):

:; prtconf -v
...
input, instance #1

Driver properties:
name='pm-components' type=string items=3 dev=none

value='NAME= hid1 Power' + '0=USB D3 State' + '3=USB D0 State'
Hardware properties:

name='driver-minor' type=int items=1
value=00000000

name='driver-major' type=int items=1
value=00000002

name='low-speed' type=boolean
name='usb-product-name' type=string items=1

value='USB to Serial'
name='usb-vendor-name' type=string items=1

value='INNO TECH'
name='usb-serialno' type=string items=1

value='20100826'
name='usb-raw-cfg-descriptors' type=byte items=34

value ←↩
=09.02.22.00.01.01.03.80.32.09.04.00.00.01.03.00.00.04.09.21.00.01.00.01.22.1 ←↩
b.00.07.05.81.03.08.00.20

name='usb-dev-descriptor' type=byte items=18
value=12.01.10.01.00.00.00.08.65.06.61.51.02.00.01.02.03.01

name='usb-release' type=int items=1
value=00000110

name='usb-num-configs' type=int items=1
value=00000001

name='usb-revision-id' type=int items=1
value=00000002

name='usb-product-id' type=int items=1
value=00005161

name='usb-vendor-id' type=int items=1
value=00000665

name='compatible' type=string items=9
value='usb665,5161.2' + 'usb665,5161' + 'usbif665,class3.0.0' + 'usbif665, ←↩

class3.0' + 'usbif665,class3' + 'usbif,class3.0.0' + 'usbif,class3.0' + ' ←↩
usbif,class3' + 'usb,device'

name='reg' type=int items=1
value=00000003

name='assigned-address' type=int items=1
value=00000005

Device Minor Nodes:
dev=(108,2)

dev_path=/pci@0,0/pci8086,7270@1d/hub@1/input@3:hid_0_1
spectype=chr type=minor
dev_link=/dev/usb/hid0

You can also check with cfgadm if the device is at least somehow visible (if not, there can be hardware issues in play). For
example, if there is a physical link but no recognized driver was attached, the device would show up as "unconfigured":

:; cfgadm | grep usb-

https://web.archive.org/web/20140126045707/http://barbz.com.au/blog/?p=407
https://web.archive.org/web/20140126045707/http://barbz.com.au/blog/?p=407

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 3 / 4

usb8/1 usb-input connected unconfigured ok

If you conclude that a change is needed, you would need to unload the existing copy of the "ugen" driver and set it up to handle
the device patterns that you find in compatible values from prtconf. For example, to monitor the devices from listings above,
you would run:

:; rem_drv ugen
:; add_drv -i '"usb463,ffff.100"' -m '* 0666 root sys' ugen

or

:; rem_drv ugen
:; add_drv -i '"usb665,5161.2"' -m '* 0666 root sys' ugen

Note that there are many patterns in the compatible line which allow for narrower or wider catchment. It is recommended to
match with the narrowest fit, to avoid potential conflict with other devices from same vendor (especially if the declared identifiers
are for a generic USB chipset).

Also note that the add_drv definition above lists the POSIX access metadata for the device node files that would be generated
when the device is plugged in and detected. In the examples above, it would be owned by root:sys but accessible for reads
and writes (0666) to anyone on the system. On shared systems you may want to constrain this access to the account that the
NUT driver would run as.

After proper driver binding, cfgadm should expose the details:

cfgadm -lv
...
usb8/1 connected configured ok

Mfg: EATON Product: Eaton 9PX NConfigs: 1 Config: 0 <no cfg str descr>
unavailable usb-input n /devices/pci@0,0/pci103c,1309@1d,2:1

...

Usually the driver mapping should set up the "friendly" device nodes under /dev/ tree as well (symlinks to real entries
in /devices/) so for NUT drivers you would specify a port=/dev/usb/463.ffff/0 for your new driver section in
ups.conf.

Note
As detailed in config-notes.txt, the "natively USB" drivers (including usbhid-ups and nutdrv_qx) match the device by ID
and/or strings it reports, and so effectively require but ignore the port option — so it is commonly configured as port=auto.
Drivers used for SHUT or serial protocols do need the device path.

For some serial-to-USB converter chips however it was noted that while the device driver is attached, and the /device/...
path is exposed in the dmesg output (saved to /var/adm/messages) the /dev/... symlinks are not created. In this case
you can pass the low-level name of the character-device node as the "port" option, e.g.:

./mge-shut -s 9px-ser -DDDDD -d2 -u root \
-x port=/devices/pci@0,0/pci103c,1309@1a,2/device@1:0

2 libusb version and binary

Until NUT release 2.7.4 the only option to build NUT drivers for USB connectivity was to use libusb-0.1 or a distribution’s
variant of it; the original Sun Solaris releases and later related systems provided their customized version for example (packaged
originally as SUNWlibusbugen, SUNWugen{,u} and SUNWusb{,s,u,vc}).

However, libusb-0.1 consuming programs had some stability issues reported when running with long-term connections to devices
(such as an UPS), especially when using USB hubs and chips where hardware vendors had cut a few corners too many, which
were addressed in a newer rewrite of the library as libusb-1.0.

config-notes.txt

NUT USB setup in modern Solaris-like systems (OpenSolaris descendants) 4 / 4

Subsequently just as at least the illumos-based distributions evolved to include the new library and certain patches for it, and the
library itself matured, the NUT project also added an ability to build with libusb-1.0 either directly or using its 0.1-compat API
(available since NUT 2.8.0 release).

If your "standard" build of NUT has problems connecting to your USB UPS (libusb binary variant should be visible in driver
debug messages), consider re-building NUT from source with the other option using the recent library build as available for your
distribution.

In this context, note the OpenIndiana libusb-1 package pull requests with code which was successfully used when developing
this documentation:

• https://github.com/OpenIndiana/oi-userland/pull/5382

• (TO CHECK) https://github.com/OpenIndiana/oi-userland/pull/5277

Binaries from builds made in OpenIndiana using the recipe from PR #5382 above were successfully directly used on contempo-
rary OmniOS CE as well.

https://github.com/OpenIndiana/oi-userland/pull/5382
https://github.com/OpenIndiana/oi-userland/pull/5277
https://github.com/OpenIndiana/oi-userland/pull/5382

	Change the OS driver binding: use UGEN
	libusb version and binary

